Skip to main content

Part of the book series: On Thinking ((ONTHINKING,volume 1))

Abstract

What goes on in the brain when we think? How can we solve a complex problem? How can we pursue an idea and finally reach a desired goal? Although a lot of neuroscience studies have extended our knowledge of the ongoing processes when our brain, for example, recalls words, discriminates coloured stimuli or detects deviants in a given display, we still know little about the ongoing dynamics when we think. What processes are necessary to compare two objects, to solve and understand a categorical syllogism, to infer the potential cause of an observed effect, or what happens when we see a Gestalt in apparently meaningless information? William James in 1890 proposed the idea that thinking is a constant ongoing stream of thoughts. In this chapter we attempt to give a brief overview of the notion of how to investigate the stream of thoughts by means of electroencephalography (EEG). First, we provide a short introduction to the technique. Then we address the notion of synchronization and describe how synchronization (binding) might help to identify the basic atoms of thinking, representing the elementary building blocks that form the stream of complex thoughts (molecules, objects). Moreover, we demonstrate how EEG can help us to understand basic thinking operations, like categorization, and make it possible to come up with new and refined cognitive models. That should help us to get a clearer picture of the question: What processes and dynamics go on in our brain when we think? We hope to show that despite the existing predominance of functional magnetic resonance imaging results concerning the current debate on the cognitive architecture of our brain, EEG may provide a more appropriate and powerful tool for the understanding of the stream of thoughts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby EG, Maddox WT (2005) Human category learning. Annu Rev Psychol 56:149–178

    Article  PubMed  Google Scholar 

  • Ashby FG, Ell SW (2001) The neurobiology of human category learning. Trends Cogn Sci 5:204–210

    Article  PubMed  Google Scholar 

  • Berger H (1929) Ueber das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York

    Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  CAS  Google Scholar 

  • Call J, Tomasello M (2005) Reasoning and thinking in nonhuman primates. In: Holyoak KJ, Morrison RG (eds) The Cambridge handbook of thinking and reasoning. Cambridge University Press, Cambridge, pp 607–632

    Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbara, NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628

    Article  PubMed  CAS  Google Scholar 

  • Cohen H, Lefebvre C (2005) Handbook of categorization in cognitive science. Elsevier, Amsterdam

    Google Scholar 

  • Coles MGH, Rugg MD (1997) Electrophysiology of mind. Event-related brain potentials and cognition. Oxford University Press, Oxford

    Google Scholar 

  • DeHaan M (2007) Infant EEG and event-related potentials. Psychology, New York

    Google Scholar 

  • Ding J, Sperling G, Srinivasan R (2006) Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cereb Cortex 16:1016–1029

    Article  PubMed  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374

    Google Scholar 

  • Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5:16–25

    Article  PubMed  Google Scholar 

  • Fangmeier T, Knauff M, Ruff CC, Sloutsky V (2006) fMRI evidence for a three-stage model of deductive reasoning. J Cogn Neurosci 18:320–334

    Article  PubMed  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2005) Mapping of the brain operational architectonics. In: Chen FJ (ed) Focus on brain mapping research. Nova Science, New York, pp 59–98

    Google Scholar 

  • Fingelkurts AA, Fingelkurts AA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kahkonen S (2004) Local and remote functional connectivity of neocortex under the inhibition influence. Neuroimage 22:1390–1406

    Article  PubMed  Google Scholar 

  • Fries P, Nikolif D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga MS (2002) Cognitive neuroscience: The biology of the mind, 2nd edn. Norton, New York

    Google Scholar 

  • Graf M (2006) Coordinate transformation in object recognition. Psychol Bull 132:920–945

    Article  PubMed  Google Scholar 

  • Handy TC (2005) Event-related potentials. MIT Press, Cambridge

    Google Scholar 

  • Hauk O, Patterson K, Woollams A, Cooper-Pye E, Pulvermuller F, Rogers TT (2007) How the camel lost its hump: the impact of object typicality on event-related potential signals in object decision. J Cogn Neurosci 19:1338–1353

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior. A neuropsychological theory. Wiley, New York

    Google Scholar 

  • Herrmann CH, Grigutsch M, Busch NA (2005) EEG oscillations and wavelet analysis. In: Handy TC (ed) Event-related potentials. MIT Press, Cambridge, pp 229–259

    Google Scholar 

  • Holroyd CB, Nieuwenhuis S, Yeung N, Nystrom L, Mars RB, Coles MGH, Cohen JD (2004) Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nat Neurosci 7:497–498

    Article  PubMed  CAS  Google Scholar 

  • Holyoak KJ, Morrison RG (2005) The Cambridge handbook of thinking and reasoning. Cambridge University Press, Cambridge

    Google Scholar 

  • Hummel J (1999) Binding problem. In: Wilson RA, Keil FC (eds) The MIT encyclopedia of the cognitive sciences. MIT Press, Cambridge, pp 85–86

    Google Scholar 

  • James W (1890) The principles of psychology, vol. I. Dover, New York

    Google Scholar 

  • Johnson JS, Olshausen BA (2005) The earliest EEG signatures of object recognition in a cuedtarget task are postsensory. J Vis 5:299–312

    Article  PubMed  Google Scholar 

  • Jung-Beeman M, Bowden E, Haberman J, Frymiare J, Arambel-Liu S, Greenblatt R, Reber P (2004) Neural activity when people solve verbal problems with insight. PLoS Biol 2:500–510

    Article  CAS  Google Scholar 

  • Kahana MJ (2006) The cognitive correlates of human brain oscillations. J Neurosci 26:1669–1672

    Article  PubMed  CAS  Google Scholar 

  • Kaiser J, Lutzenberger W (2003) Induced gamma-band activity and human brain function. Neuroscientist 9:475–484

    Article  PubMed  Google Scholar 

  • Kanizsa G (1976) Subjective contours. Sci Am 234:48–52

    PubMed  CAS  Google Scholar 

  • Kiefer M (2001) Perceptual and semantic sources of category-specific effects: event-related potentials during picture and word categorization. Mem Cognit 29:100–116

    PubMed  CAS  Google Scholar 

  • Knoblich G, Öllinger M (2006) The eureka moment. Sci Am Mind 10:38–43

    Article  Google Scholar 

  • Lisman JE, Idiart MA (1995) Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267:1512–1515

    Article  PubMed  CAS  Google Scholar 

  • Luck SJ (2005) An introduction to the event-related potential technique. MIT Press, Cambridge

    Google Scholar 

  • Margolis E, Laurence S (1999) Concepts — core readings. MIT Press, Cambridge

    Google Scholar 

  • Niedermayer E, Silva LD (1993) Electroencephalography, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Öllinger M, Jones G, Knoblich G (2008) Investigating the effect of mental set on insight problem solving. Exp Psychol 55:270–282

    Google Scholar 

  • Roskies AL (1999) The binding problem. Neuron 24:7–9

    Article  PubMed  CAS  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430–440

    Article  PubMed  CAS  Google Scholar 

  • Sejnowski TJ, Paulsen O (2006) Network oscillations: emerging computational principles. J Neurosci 26:1673–1676

    Article  PubMed  CAS  Google Scholar 

  • Shastri L, Ajjanagadde V (1993) From simple associations to systematic reasoning: a connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behav Brain Sci 16:417–494

    Article  Google Scholar 

  • Sim EJ, Kiefer M (2005) Category-related brain activity to natural categories is associated with the retrieval of visual features: evidence from repetition effects during visual and functional judgments. Cogn Brain Res 24:260–273

    Article  Google Scholar 

  • Singer W (1999) Binding by neural synchrony. In: Wilson RA, Keil FC (eds) The MIT encyclopedia of the cognitive sciences. MIT Press, Cambridge, pp 81–84

    Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Sternberg RJ, Ben-Zeev T (2001) Complex cognition. Oxford University Press, Oxford

    Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    Article  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Pernier J (1999) A ring-shaped distribution of dipoles as a source model of induced gamma-band activity. Clin Neurophysiol 110:660–665

    Article  PubMed  CAS  Google Scholar 

  • Treisman A (1999) Solutions to the binding problem: review progress through controversy summary and convergence. Neuron 24:105–110

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Gelade G (1980) A feature integration theory of attention. Cogn Psychol 12:97–136

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Tian SJ, Wang HJ, Cui LL, Zhang YY, Zhang X (2003) Event-related potentials evoked by multi-feature conflict under different attentive conditions. Exp Brain Res 148:451–457

    PubMed  Google Scholar 

  • Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7:553–559

    Article  PubMed  Google Scholar 

  • Zhang X, Wang Y, Li S, Wang L (2003) Event-related potential N270, a negative component to identification of conflicting information following memory retrieval. Clin Neurophysiol 114:2461–2468

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Öllinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öllinger, M. (2009). EEG and Thinking. In: Kraft, E., Gulyás, B., Pöppel, E. (eds) Neural Correlates of Thinking. On Thinking, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68044-4_5

Download citation

Publish with us

Policies and ethics