Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

The term tundra is generally applied to treeless areas that are situated beyond the climatic limit for tree growth. This definition can denote both regions of high latitude north or south of the tree line (i.e. arctic/Antarctic or polar tundra), or high altitude belts above the natural tree line in all climatic zones (i.e. alpine tundra). Arctic and alpine tundras have many similarities, but also great differences. This chapter describes the processes of carbon (C) and nutrient cycling in arctic or arctic-alpine tundra, the latter referring to high elevation belts in the boreal region above 60 °N. The majority of this area is located in northern parts of Russia, North America and Scandinavia. For a comprehensive description of tundra systems, see Wielgolaski (1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manage 62:1165–1183

    Article  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  CAS  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22

    Article  Google Scholar 

  • Berg B, McClaugherty C, Johansson M-B (1993) Litter mass-loss rates in late stages of decomposition at some climatically and nutritionally different pine sites. Long-term decomposition in a Scots pine forest. VIII. Can J Bot 71:680–692

    Article  Google Scholar 

  • Bledsoe C, Klein P, Bliss LC (1990) A survey of mycorrhizal plants on Truelove, Lowland, Devon Island, NWT, Canada. Can J Bot 68:1848–1856

    Google Scholar 

  • Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem 31:1889–1891

    Article  CAS  Google Scholar 

  • Bryant JP, Provenza FD, Pastor J, Reichardt PB, Clausen TP, du Toit JT (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22:431–446

    Article  Google Scholar 

  • Chapin DM (1996) Nitrogen mineralisation, nitrification and denitrification in a high arctic lowland ecosystem, Devon Island, N.W.T., Canada. Arc Alp Res 28:85–92

    Article  Google Scholar 

  • Chapin DM, Bledsoe CS (1992) Nitrogen fixation in arctic plant communities. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver G, Svoboda J, Chu E (ed) Arctic ecosystems in a changing climate. Academic, New York pp 301–319

    Google Scholar 

  • Chapin FS (1980) Nutrient allocation and responses to defoliation in tundra plants. Arc Alp Res 12:553–563

    Article  CAS  Google Scholar 

  • Chapin FS (1991) Effects of multiple environmental stresses on nutrient availability and use. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic, New York, pp 67–88

    Google Scholar 

  • Chapin FS, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climate change. Ecology 77:822–840

    Article  Google Scholar 

  • Chapin FS, Barsdate RJ, Barel D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31:189–199

    Article  CAS  Google Scholar 

  • Chapin FS, Johnson DA, McKendrick JD (1986) Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory. J Ecol 68:189–209

    Google Scholar 

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Cheng W, Virginia RA, Oberbauer SF, Gillespie CT, Reynolds JF, Tenhunen JD (1998) Soil nitrogen, microbial biomass, and respiration along an arctic toposequence. Soil Sci Soc Am J 62:654–662

    Article  CAS  Google Scholar 

  • Christensen TR, Michelsen A, Jonasson S (1999) Exchange of CH4 and N2O in a subarctic heath soil: effects of inorganic N and P and amino acid addition. Soil Biol Biochem 31:637–641

    Article  CAS  Google Scholar 

  • Clein JS, Schimel JP (1995) Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biol Biochem 27:1231–1234

    Article  CAS  Google Scholar 

  • Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralisation, immobilisation, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349

    Article  CAS  Google Scholar 

  • Eno CF (1960) Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci Soc Am Proc 24:277–279

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP, Cates RG, Zou J (2001) Influence of balsam poplar tannin reactions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biol Biochem 33:1827–1839

    Article  CAS  Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Google Scholar 

  • Fisk MC, Schmidt SK (1996) Microbial responses to nitrogen additions in alpine tundra soil. Soil Biol Biochem 28:751–755

    Article  CAS  Google Scholar 

  • Frank DA, Groffman PM (1998) Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology 79:2229–2241

    Article  Google Scholar 

  • Franzluebbers AJ, Stuedemann JA, Schomberg HH, Wilkinson SR (2000) Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biol Biochem 32:469–478

    Article  CAS  Google Scholar 

  • Gersper PL, Alexander V, Barkley SA, Barsdale RJ, Flint PS (1980). The soils and their nutrients. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds) An arctic ecosystem: the coastal tundra at Barrow, Alaska. Dowden Hutchinson Ross, Stroudsburg, PA, pp 219–254

    Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415–435

    Article  Google Scholar 

  • Grellmann D (2002) Plant responses to fertilization and exclusion of grazers on an arctic tundra heath. Oikos 98:190–204

    Article  Google Scholar 

  • Grime JP, Cornelissen JHC, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rates of leaves. Oikos 77:489–494

    Article  Google Scholar 

  • Grogan P, Michelsen A, Ambus P, Jonasson S (2004) Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biol Biochem 36:641–654

    Article  CAS  Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralisation, immobilisation and nitrification. In: Mickelson SH (ed) Methods of soil analysis, Part 2. Microbiological and biochemical properties. Soil Science Society of America, Washington DC, pp 985–1018

    Google Scholar 

  • Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999) Plant performance and soil nitrogen mineralisation in response to simulated climate change in subarctic dwarf shrub heath. Oikos 86:331–343

    Article  Google Scholar 

  • Heal OW, Broll G, Hooper DU, McConnell J, Webb NR, Wookey PA (1998) Impacts of global change on tundra soil biology. In: Heal OW, Callaghan TV, Cornelissen JHC, Körner C, Lee SE (eds) Global change in Europe’s cold regions. 27. Ecosystems Research Report, pp 33–93

    Google Scholar 

  • Herrman A, Witter E (2002) Sources of C and N contributing to the flush in mineralisation upon freeze-thaw cycles in soils. Soil Biol Biochem 34:1495–1505

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hobbie SE, Chapin FS III (1996) Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35:327–338

    Article  Google Scholar 

  • Hobbie SE, Chapin FS III (1998) The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–1544

    Article  Google Scholar 

  • Hobbie SE, Nadelhoffer K, Högberg P (2002) A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–170

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  PubMed  CAS  Google Scholar 

  • Jeffries RL, Bryant JP (1995) The plant-vertebrate herbivore interface in arctic ecosystems. In: Chapin FS, Körner C (eds) Arctic and Alpine Biodiversity, vol 113. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jefferies RL, Klein DR, Shaver GR (1994) Vertebrate herbivores and northern plant communities: reciprocal influences and responses. Oikos 71:193–206

    Article  Google Scholar 

  • Jonasson S, Havström M, Jensen M, Callaghan TV (1993) In situ mineralisation of nitrogen and phosphorus of arctic soils after pertubations simulating climate change. Oecologia 95:179–186

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1996) Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia 106:507–515

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK (1999a) Coupling of nutrient cycling and carbon dynamics in the Arctic, integration of soil microbial and plant processes. Appl Soil Ecol 11:135–146

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999b) Responses of microbes and plants to changed temperature, nutrient, and light regimes in the arctic. Ecology 80:1828–1843

    Article  Google Scholar 

  • Jonasson S, Chapin FS, Shaver GR (2001) Biogeochemistry in the Arctic: patterns, processes and controls. In: Global biogeochemical cycles in the climate system. Academic, New York, pp 139–150

    Google Scholar 

  • Jonasson S, Castro J, Michelsen A (2004) Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosms. Soil Biol Biochem 36:1129–1139

    Article  CAS  Google Scholar 

  • Jones DL, Kielland K (2002) Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem 34:209–219

    Article  CAS  Google Scholar 

  • Jones DL, Shannon D, Murphy DV, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749–756

    Article  CAS  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • Kohn LM, Stasovski E (1990) The mycorrhizal status of plants at Alexandra Fiord, Ellesmere Island, Canada, a high arctic site. Mycologia 82:23–35

    Article  Google Scholar 

  • Kryazhimskii FV, Danilov AN (2000) Reindeer in tundra ecosystems: the challenges of understanding system complexity. Polar Res 19:107–110

    Google Scholar 

  • Kytöviita MM (2005) Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol Ecol 53:27–32

    Article  PubMed  CAS  Google Scholar 

  • Larsen KS, Jonasson S, Michelsen A (2002) Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Appl Soil Ecol 21:187–195

    Article  Google Scholar 

  • Lipson DA, Monson RK (1998) Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-wet events. Oecologia 113:406–414

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448

    Article  CAS  Google Scholar 

  • McKendrick JD, Batzli GO, Everett KR, Swanson JC (1980) Some effects of mammalian herbivores and fertilization on tundra soils and vegetation. Arctic 12:565–578

    Article  Google Scholar 

  • McNaughton (1985) Ecology of a grazing ecosystem: the Serengeti. Ecol Monogr 55:259–294

    Article  Google Scholar 

  • Melillo JM, Callaghan TV, Woodward FI, Salati E, Sinha SK (1990) Effects on ecosystems. In: Houghton JT, Jenkins GT, Ephraums JJ (eds) Climate change, the IPCC scientific assessment. Cambridge University Press, pp 282–310

    Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Dighton J, Jones HE, Callaghan TV (1995) Inhibition of growth, and effects on nutrient uptake of arctic graminoids by leaf extracts — allelopathy or resource competition between plants and microbes. Oecologia 103:407–418

    Article  Google Scholar 

  • Michelsen A, Graglia E, Schmidt IK, Jonasson S, Sleep D, Quarmby C (1999) Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath. New Phytol 143:523–538

    Article  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  CAS  Google Scholar 

  • Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366

    Article  Google Scholar 

  • Molvar EM, Bowyer RT, van Ballenberghe V (1993) Moose herbivory, browse quality, and nutrient cycling in an Alaskan treeline community. Oecologia 94:472–479

    Article  Google Scholar 

  • Moore TR (1984) Litter decomposition in a subarctic spruce-lichen woodland, eastern Canada. Ecology 65:299–308

    Article  CAS  Google Scholar 

  • Moorhead DL, Reynolds JF (1993) Effects of climate change on decomposition in arctic tussock tundra: a modeling synthesis. Arctic 25:403–412

    Article  Google Scholar 

  • Moorhead DL, Westerfield MM, Zak JC (1998) Plants retard litter decay in a nutrient-limited soil: a case of exploitative competition? Oecologia 113:530–536

    Article  Google Scholar 

  • Mulder CPH (1999) Vertebrate herbivores and plants in the Arctic and subarctic: effects on individuals, populations, communities and ecosystems. Persp Plant Ecol Evolut Syst 2:29–55

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralisation in six arctic soils. Ecology 72:242–253

    Article  Google Scholar 

  • Nadelhoffer K, Giblin A, Shaver GR, Linkins AE (1992) Microbial processes and plant nutrient availability in arctic soils. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. An ecophysiological perspective. Academic, San Diego, pp 281–300

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Nordin A, Schmidt IK, Shaver G (2004) Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85:955–962

    Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361:520–523

    Article  Google Scholar 

  • Oechel WC, Cook AC, Hastings SJ, Vourlitis GL (1997) Effects of CO2 and climatic change on arctic ecosystems. In: Woodin SJ, Marquiss M (eds) Ecology of arctic environments. Special Publication number 13 of British Ecological Society. Blackwell, Oxford, pp 255–273

    Google Scholar 

  • Oksanen L, Virtanen R (1995) Topographic, altitudinal and regional patterns in continental and suboceanic heath vegetation of northern Fennoscandia. Acta Bot Fenn 153:1–80

    Google Scholar 

  • Olofsson J, Stark S, Oksanen L (2004) Reindeer influence on ecosystem processes in the tundra. Oikos 105:386–396

    Article  CAS  Google Scholar 

  • Pastor J, Naiman RJ (1992) Selective foraging and ecosystem processes in boreal forests. Am Nat 139:690–705

    Article  Google Scholar 

  • Pastor J, Dewey B, Naiman RJ, McInnes PF, Cohen Y (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 72:467–480

    Article  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Post ES, Klein DR (1996) Relationship between graminoid growth form and levels of grazing by caribou (Rangifer tarandus) in Alaska. Oecologia 107:364–372

    Article  Google Scholar 

  • Ritchie ME, Tilman D, Knops JMH (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–177

    Article  Google Scholar 

  • Robinson CH (2002) Controls on decomposition and soil nitrogen availability at high latitudes. Plant Soil 242:65–81

    Article  CAS  Google Scholar 

  • Robinson CH, Wookey PA (1997) Microbial ecology, decomposition and nutrient cycling. In: Woodin SJ, Marquiss M (eds) Ecology of Arctic environments. Special Publication number 13 of the British Ecological Society. Blackwell, Oxford, pp 41–67

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralisation: challenges of a changing paradigm. Ecology 85:591–602

    Google Scholar 

  • Schimel JP, Clein JS (1996) Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem 28:1061–1066

    Article  Google Scholar 

  • Schimel JP, Kielland K, Chapin FS (1996) Nutrient availability and uptake by tundra plants. In: Reynolds JF, Tenhunen JD (eds) Landscape function and disturbance in arctic tundra. Springer, Berlin Heidelberg New York, pp 203–221

    Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralisation in two Arctic tundra communities. Soil Biol Biochem 36:217–227

    Article  CAS  Google Scholar 

  • Schmidt IK, Michelsen A, Jonasson S (1997a) Effects on plant production after addition of labile carbon to arctic/alpine soils. Oecologia 112:305–313

    Article  Google Scholar 

  • Schmidt IK, Michelson A, Jonasson S (1997b) Effects of labile soil carbon on nutrient partitioning between an arctic graminoid and microbes. Oecologia 112:557–565

    Article  Google Scholar 

  • Schmidt IK, Jonasson S, Michelsen A (1999) Mineralisation and microbial immobilisation of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol 11:147–160

    Article  Google Scholar 

  • Schmidt IK, Ruess L, Bååth E, Michelsen A, Ekelund F, Jonasson S (2000) Long-term manipulation of the microbes and microfauna of two subarctic heaths by addition of fungicide, bactericide, carbon and fertilizer. Soil Biol Biochem 32:707–720

    Article  CAS  Google Scholar 

  • Schmidt IK, Jonasson S, Michelsen A, Nordin A (2002) Mineralisation and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant and Soil 242:93–106

    Article  CAS  Google Scholar 

  • Stark S, Grellmann D (2002) Soil microbial responses to herbivory in an arctic tundra heath at two levels of nutrient availability. Ecology 83:2736–2744

    Article  Google Scholar 

  • Stark S, Kytöviita MM (2006) Simulated grazer effects on microbial respiration in a subarctic meadow: implications for nutrient competition between plants and soil microorganisms. Appl Soil Ecol 31:20–31

    Article  Google Scholar 

  • Stark S, Strömmer R, Tuomi J (2002) Reindeer grazing and soil microbial processes in two suboceanic and two subcontinental tundra heaths. Oikos 97:69–78

    Article  Google Scholar 

  • Stark S, Tuomi J, Strömmer R, Helle T (2003) Non-parallel changes in soil microbial carbon and nitrogen dynamics due to reindeer grazing in northern boreal forests. Ecography 26:51–59

    Article  Google Scholar 

  • Vance ED, Chapin FS (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biol Biochem 33:173–188

    Article  CAS  Google Scholar 

  • Van Cleve K, Alexander V (1981) Nitrogen cycling in tundra and boreal ecosystems. Ecol Bull 33:375–404

    Google Scholar 

  • Van der Wal R, Brooker R, Cooper EJ, Langvatn R (2001) Differential effects of reindeer on high arctic lichens. J Veg Sci 12:705–710

    Article  Google Scholar 

  • Van der Wal R, Bargdett RD, Harrison KA, Stien A (2004) Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography 27:242–252

    Article  Google Scholar 

  • Väre H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in northern Fennoscandia. Arc Alp Res 29:93–104

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2005) The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry 73:359–380

    Article  CAS  Google Scholar 

  • Wielgolaski FE (1997) Polar and alpine tundra (Ecosystems of the World 3). Elsevier, Amsterdam

    Google Scholar 

  • Zimov ZA, Chuprynin VI, Oreshko AP, Chapin FS, Reynolds JF, Chapin MC (1995) Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. Am Nat 146:765–794

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stark, S. (2007). Nutrient Cycling in the Tundra. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_11

Download citation

Publish with us

Policies and ethics