Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

Drylands occupy approximately 40% of the Earth’s land surface and have low inputs of mean annual precipitation (P) relative to mean annual potential evapotranspirational (ET) losses (Millennium Ecosystem Assessment 2005). The United Nations Educational, Scientific and Cultural Organization (UNESCO 1979) proposed the following classification scheme for drylands: hyper-arid zone (P/ET <0.03), arid zone (P/ET 0.03–0.20), semi-arid zone (P/ET 0.20–0.05) and subhumid zone (P/ET 050–0.75). The majority of studies summarised in this chapter were conducted in arid and semi-arid zones with mean annual precipitation ≤300 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J Geophys Res Atmos 106:18075–18084

    CAS  Google Scholar 

  • Allen MF, Figueroa C, Weinbaum BS, Barlow SB, Allen EB (1996) Differential production of oxalate by mycorrhizal fungi in arid ecosystems. Biol Fertil Soils 22:287–292

    CAS  Google Scholar 

  • Alloway BJ, Tills AR (1984) Copper deficiency in world crops. Outlook Agric 13:32–34

    CAS  Google Scholar 

  • Anderson DC, Harper KT, Holmgren RC (1982) Factors influencing development of cryptogamic soil crusts in Utah deserts. J Range Manage 35:180–185

    Google Scholar 

  • Austin AT, Sala OE (2002) Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina. J Vegetation Sci 13:351–360

    Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London

    Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York

    Google Scholar 

  • Barger NN (2003) Biogeochemical cycling and N dynamics of biological soil crusts in a semi-arid ecosystem. PhD Thesis, Colorado State University, Fort Collins, CO

    Google Scholar 

  • Barger NN, Belnap J, Ojima DS, Mosier A (2005) NO gas loss from biologically crusted soils in Canyonlands National Park, Utah. Biogeochemistry 75:373–391

    CAS  Google Scholar 

  • Barger NN, Herrick JE, Van Zee JW, Belnap J (2006) Impacts of biological soil crust disturbance and composition on C and N losses from water erosion. Biogeochemistry 77:247–263

    CAS  Google Scholar 

  • Barton L, McLay CDA, Schipper LA, Smith CT (1999) Annual denitrification rates in agricultural and forest soils: a review. Aust J Soil Res 37:1073–1093

    Google Scholar 

  • Belnap J (1996) Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol Fertil Soils 23:362–367

    CAS  Google Scholar 

  • Belnap J (2001a) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 241–261

    Google Scholar 

  • Belnap J (2001b) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 164–174

    Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135

    CAS  Google Scholar 

  • Belnap J (2003) Comparative structure of physical and biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 177–191

    Google Scholar 

  • Belnap J, Phillips SL, Miller ME (2004) Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141:306–316

    PubMed  Google Scholar 

  • Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86:298–307

    Google Scholar 

  • Belnap J, Phillips SL, Humphries H, Miller DM (2006) Soil and climate controls on the distribution of exotic annual grasses in the western U.S. Range Ecol Manage (in press)

    Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2002) Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2. Soil Biol Biochem 34:1777–1784

    CAS  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2003) Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biol Biochem 35:643–649

    CAS  Google Scholar 

  • Binet P (1981) Short-term dynamics of minerals in arid ecosystems. In Goodall DW, Perry RA (eds) Arid land ecosystems. Cambridge University Press, Cambridge, pp 325–356

    Google Scholar 

  • Blank RR, Qualls RG, Young JA (2002) Lepidium latifolium: plant nutrient competition-soil interactions. Biol Fertil Soil 35:458–464

    CAS  Google Scholar 

  • Bohrer G, Kagan-Zur V, Roth-Bejerano N, Ward D, Beck G, Bonifacio E (2003) Effects of different Kalahari-desert VA mycorrhizal communities on mineral acquisition and depletion from the soil by host plants. J Arid Environ 55:193–208

    Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 41:152–163

    Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179:480–483

    PubMed  CAS  Google Scholar 

  • Burt R, Fillmore M, Wilson MA, Gross ER, Langridge RW, Lammers DA (2001) Soil properties of selected pedons on ultramafic rocks in Klamath Mountains, Oregon. Commun Soil Sci Plant Anal 32:2145–2175

    CAS  Google Scholar 

  • Cartwright B, Hallsworth EG (1970) Effects of copper deficiency on root nodules of subterranean clover. Plant Soil 33:685–698

    CAS  Google Scholar 

  • Cleugh HA, Miller JM, Bohm M (1998) Direct mechanical effect of wind on crops. Agrofor Syst 41:85–112

    Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycl 13:623–645

    CAS  Google Scholar 

  • Cornelis WM, Gabriels D (2003) The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models. Sedimentology 50:771–790

    Google Scholar 

  • Cramer GR, Nowak RS (1992) Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol Plant 84:600–605

    CAS  Google Scholar 

  • Crooke WM, Knight AH (1962) An evaluation of published data on the mineral composition of plants in the light of the cation-exchange capacities of their roots. Soil Sci 93:365–373

    CAS  Google Scholar 

  • Cross AF, Schlesinger WH (2001) Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 52:155–172

    CAS  Google Scholar 

  • Davey A, Marchant HJ (1983) Seasonal variation in nitrogen fixation by Nostoc commune Vaucher at the Vestfold Hills, Antarctica. Phycology 22:377–385

    Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosys 48:37–50

    CAS  Google Scholar 

  • Day AD, Ludeke KL (1993) Plant nutrients in desert environments. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Delwiche CC, Wijler J (1956) Non-symbiotic nitrogen fixation in soil. Plant Soil 7:113–129

    CAS  Google Scholar 

  • Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of Nostoc. J Phycol 31:2–18

    CAS  Google Scholar 

  • Dougill AJ, Heathwaite AL, Thomas DSG (1998) Soil water movement and nutrient cycling in semi-arid rangeland: vegetation change and system resilience. Hydrol Process 12:443–459

    Google Scholar 

  • Duan Z, Hongland X (2000) Effects of soil properties on ammonia volatilization. Soil Sci Plant Nutr 46:845–852

    Google Scholar 

  • Epstein E (1961) The essential role of calcium in selective cation transport by plant cells. Plant Physiol 36:437–444

    PubMed  CAS  Google Scholar 

  • Eskew DL, Ting IP (1978) Nitrogen fixation by legumes and blue-green algal lichen crusts in a Colorado desert environment. Am J Bot 65:850–856

    CAS  Google Scholar 

  • Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80:150–160

    Google Scholar 

  • Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225

    Google Scholar 

  • Farnsworth RB, Romney EM, Wallace A (1976) Implications of symbiotic nitrogen fixation by desert plants. Great Basin Nat 36:65–80

    CAS  Google Scholar 

  • Fierer NG, Gabet EJ (2002) Carbon and nitrogen losses by surface runoff following changes in vegetation. J Environ Qual 31:1207–1213

    PubMed  CAS  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere Wiley, New York, pp 7–21

    Google Scholar 

  • Fisher SG, Grimm NB (1985) Hydrologic and material budgets for a small Sonoran desert watershed during three consecutive cloudburst floods. J Arid Environ 9:105–118

    Google Scholar 

  • Frank DA, Zhang Y (1997) Ammonia volatilization from a seasonally and spatially variable grazed grassland: Yellowstone National Park. Biogeochemistry 36:189–203

    Google Scholar 

  • Garcia-Moya E, McKell CM (1970) Contribution of shrubs to the nitrogen economy of a desertwash plant community. Ecology 51:81–88

    Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironment and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Google Scholar 

  • Gillette D (1997) Soil derived dust as a source of silica: aerosol properties, emissions, deposition, and transport. J Exp Anal Environ Epidemiol 7:303–311

    CAS  Google Scholar 

  • Gillette DA, Fryrear DW, Gill TE, Ley T, Cahill TA, Gearhart EA (1997) Relation of vertical flux of particles smaller than 10 mm to aeolian horizontal mass flux at Owens Lake. J Geophys Res 102:26009–26015

    Google Scholar 

  • Granhall U (1970) Acetylene reduction by blue-green algae isolated from Swedish soils. Oikos 21:330–332

    CAS  Google Scholar 

  • Granhall U (1981) Biological nitrogen fixation in relation to environmental factors and functioning of natural ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecological Bulletin, Stockholm, pp 131–144

    Google Scholar 

  • Gray B, Drake M, Colby WG (1953) Potassium competition in grass-legume associations as a function of root cation exchange capacity. Soil Sci Soc Am Proc 17:235–239

    Google Scholar 

  • Guilbault MR, Matthias AD (1998) Emissions of N2O from Sonoran Desert and effluent-irrigated grass ecosystems. J Arid Environ 38:87–98

    Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc deficiency in crop plants. New Phytol 159:341–350

    CAS  Google Scholar 

  • Harner RF, Harper KT (1973) Mineral composition of grassland species of the eastern Great Basin in relation to stand productivity. Can J Bot 51:2037–2046

    CAS  Google Scholar 

  • Harris GA (1967) Some competitive relationships between Agropyron spicatum and Bromus tectorum. Ecol Monogr 37:89–111

    Google Scholar 

  • Hartley AE, Schlesinger WH (2000) Environmental controls on nitric oxide emission from northern Chihuahuan desert soils. Biogeochemistry 50:279–300

    CAS  Google Scholar 

  • Hartley AE, Schlesinger WH (2002) Potential environmental controls on nitrogenase activity in biological crusts of the northern Chihuahuan Desert. J Arid Environ 52:293–304

    Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests — evaluation of biogeochemical theory. Ecology 76:493–509

    Google Scholar 

  • Horne AJ (1972) The ecology of nitrogen fixation on Signy Island, South Orkney Islands. Brit Antarctic Surv Bull 27:1–18

    Google Scholar 

  • Hunter RB, Wallace A, Romney EM (1980) Field studies of mineral nutrition of Larrea tridentata: importance of N, pH, and Fe. Great Basin Nat Mem 4:162–167

    Google Scholar 

  • Isichei AO (1980) Nitrogen fixation by blue-green algal soil crusts in Nigerian savanna. In: Rosswall T (ed) Nitrogen cycling in west African ecosystems. Reklam and Katalogtryck, Uppsala, Sweden, pp 191–198

    Google Scholar 

  • Issa OM, Stal LJ, Défarge C, Couté A, Trichet J (2001) Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger). Soil Biol Biochem 33:1425–1428

    Google Scholar 

  • James JJ, Tiller RL, JH Richards (2004) Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol 93:113–126

    Google Scholar 

  • Jarrell WM, Virginia RA (1989) Micro nutrient metals in mesquite dominated Chihuahuan Desert ecosystems (abstract). Bull Ecol Soc Am 70:155

    Google Scholar 

  • Jaurequi MA, Reisenauer HM (1982) Dissolution of oxides of manganese and iron by root exudate components. Soil Sci Soc Am J 46:314–317

    Google Scholar 

  • Jeffries DL, Klopatek JM, Link SO, Bolton H Jr (1992) Acetylene reduction by cryptogamic crusts from a blackbrush community as related to resaturation and dehydration. Soil Biol Biochem 24:1101–1105

    CAS  Google Scholar 

  • Jobbàgy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Google Scholar 

  • Johnson SL, Budinoff C, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7:1–12

    PubMed  CAS  Google Scholar 

  • Jungk A, Claassen N (1997) Ion diffusion in the soil-root system. Adv Agron 61:53–110

    CAS  Google Scholar 

  • Jurinak JJ, Dudley LM, Allen MF, Knight WG (1986) The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: a thermodynamic study. Soil Sci 142:255–261

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, Cambridge

    Google Scholar 

  • Kershaw KA, Dzikowski PA (1977) Physiological-environmental interactions in lichens. VI. Nitrogenase activity in Peltigera polydactyla after a period of desiccation. New Phytol 79:417–421

    CAS  Google Scholar 

  • Killingbeck KT (1989) Inefficient nitrogen resorption in a population of ocotillo (Fouquieria splendens Engelm.): a paradox caused by zinc deficiency? Bull Ecol Soc Am 70:168

    Google Scholar 

  • Klubek B, Skujins J (1980) Heterotrophic N2-fixation in arid soil crusts. Soil Biol Biochem 12:229–236

    CAS  Google Scholar 

  • Kraegeloh A, Kunte HJ (2002) Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles 6:453–462

    PubMed  CAS  Google Scholar 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry. McGraw-Hill, Boston

    Google Scholar 

  • Lajtha KL, Bloomer SH (1988) Factors affecting phosphorus adsorption and phosphorus retention in an arid ecosystem. Soil Sci 146:160–167

    CAS  Google Scholar 

  • Lajtha KL, Schlesinger WH (1988a) The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology 69:24–39

    CAS  Google Scholar 

  • Lajtha KL, Schlesinger WH (1988b) The effect of CaCO3 on the uptake of phosphorous by two desert shrub species, Larrea tridentata (DC.) Cov. and Parthenium incanum H.B.K. Bot Gaz 149:328–334

    CAS  Google Scholar 

  • Lange OL (2003) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg New York, pp 217–240

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1997) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1–15

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202

    Google Scholar 

  • Leigh, RA, Storey R (1991) Nutrient compartmentation in cells and its relevance to the nutrition of the whole plant. In: Porter JR, Lawlor DW (eds) Plant growth: interactions with nutrition and the environment. Cambridge University Press, Cambridge, pp 33–54

    Google Scholar 

  • Leys J, McTainsh G (1994) Soil loss and nutrient decline by wind erosion — cause for concern. Aust J Soil Water Conserv 7:30–35

    Google Scholar 

  • Leys JF, McTainsh GH (1996) Sediment fluxes and particle grain-size characteristics of wind-eroded sediments in southeastern Australia. Earth Surface Process Landforms 21:661–671

    CAS  Google Scholar 

  • Li J, Okin GS (2004) Soil nutrient distribution in response to wind erosion in a desert grassland Soil Science Society of America Fall Meeting, Seattle, WA

    Google Scholar 

  • Lindsay WL, Vlek PLG (1977) Phosphate minerals. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, Wisconsin

    Google Scholar 

  • MacGregor AN, Johnson DE (1971) Capacity of desert algal crusts to fix atmospheric nitrogen. Soil Sci Soc Am Proc 35:843–844

    CAS  Google Scholar 

  • Magid J, Nielsen NE (1992) Season variation in organic and inorganic phosphorus fractions of temperate-climate sandy soils. Plant Soil 144:155–165

    CAS  Google Scholar 

  • Mahmoud SAZ, El-Sawy M, Ishac YZ, El-Safty MM (1978) The effects of salinity and alkalinity on the distribution and capacity of N2-fixation by Azotobacter in Egyptian soils. Ecol Bull 26:99–109

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Martin RE, Asner GP, Ansley RJ, Mosier AR (2003) Effects of woody vegetation encroachment on soil nitrogen oxide emission in a temperate savanna. Ecol Appl 13:897–910

    Google Scholar 

  • Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54

    Google Scholar 

  • Mayland HF, MacIntosh TH, Fuller WH (1966) Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci Soc Am Proc 30:56–60

    CAS  Google Scholar 

  • Meyer SE (1986) The ecology of gypsophile endemism in the eastern Mojave Desert. Ecology 67:1303–1313

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: desertification synthesis. World Resources Institute, Washington DC

    Google Scholar 

  • Miller ME (2000) Effects of resource manipulations and soil characteristics on Bromus tectorum L. and Stipa hymenoides R. & S. in calcareous soils of Canyonlands National Park, Utah. PhD dissertation, University of Colorado, Boulder

    Google Scholar 

  • Mummey DL, Smith JL, Bolton H Jr (1994) Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation. Soil Biol Biochem 26:279–286

    CAS  Google Scholar 

  • Mummey DL, Smith JL, Bolton H Jr (1997) Small-scale spatial and temporal variability of N2O flux from a shrub-steppe ecosystem. Soil Biol Biochem 29:1699–1706

    CAS  Google Scholar 

  • Nash TH III (1996) Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash TH III (ed) Lichen Biology. Cambridge University Press, Cambridge, pp 121–135

    Google Scholar 

  • Neff JC, Reynolds R, Sanford RL Jr, Fernandez D, Lamothe P (2006) Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah. Ecosystems (in press)

    Google Scholar 

  • Nelson SD, Jolley VC (1989) Are wildland plant communities a potential source of understanding biological responses to iron deficiency stress? In: Proceedings of the Symposium on Shrub Ecophysiology and Biotechnology, Gen. Tech. Rep. INT-256. US Dept Agriculture Forest Service, Intermountain Research Station

    Google Scholar 

  • Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. J Ecol 83:713–726.

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol System 4:25–51

    Google Scholar 

  • Okin GS, Gillette DA (2001) Distribution of vegetation in wind-dominated landscapes: implications for wind erosion modeling and landscape processes. J Geophys Res 106:9673–9683

    Google Scholar 

  • Okin GS, Murray B, Schlesinger WH (2001a) Degradation of sandy arid shrubland environments: observations, process modelling, and management implications. J Arid Environ 47:123–144

    Google Scholar 

  • Okin GS, Murray B, Schlesinger WH (2001b) Desertification in an arid shrubland in the southwestern United States: process modeling and validation. In: Conacher A (ed) Land degradation: papers selected from contributions to the sixth meeting of the International Geographical Union’s Commission on Land Degradation and Desertification, Perth, Western Australia, 20–28 September 1999. Kluwer, Dordrecht, pp 53–70

    Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) The impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:10.1029/2003GB002145

    Google Scholar 

  • Okin GS, Herrick JE, Gillette DA (2006) Multiscale controls on and consequences of aeolian processes in landscape change in arid and semiarid environments. J Arid Environ 65:253–275

    Google Scholar 

  • Oyarzún CE, Godoy R, De Schriver A, Staelens J, Lust N (2004) Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry 71:107–123

    Google Scholar 

  • Parsons AJ, Wainwright J, Schlesinger WH, Abrahams AD (2003) The role of overland flow in sediment and nitrogen budgets of mesquite dunefields, southern New Mexico. J Arid Environ 53:61–71

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  • Pederson JC, Harper KT (1979) Chemical composition of some important plants of southeastern Utah summer ranges related to mule deer reproductions. Great Basin Nat 39:122–128

    Google Scholar 

  • Pepper IL, Upchurch RP (1991) Nitrogen fixation by desert legumes associated with rhizobia. In: Skujins J (ed) Semiarid lands and deserts. Dekker, New York, pp 443–467

    Google Scholar 

  • Peterjohn WS (1991) Denitrification: enzyme content and activity in desert soils. Soil Biol Biochem 23:845–855

    CAS  Google Scholar 

  • Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10:67–79

    Google Scholar 

  • Peterjohn WT, Schlesinger WH (1991) Factors controlling denitrification in a Chihuanuan Desert ecosystem. Soil Sci Am J 55:1694–1701

    Google Scholar 

  • Pregitzer KS, Zak DR, Burton AJ, Ashby JA, MacDonald NW (2004) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68:179–197

    CAS  Google Scholar 

  • Raupach MR, Lu H (2004) Representation of land-surface processes in aeolian transport models. Environ Modelling Software 19:93–112

    Google Scholar 

  • Ravi S, D’Odorico P (2005) A field-scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophys Res Lett 32:L023675

    Google Scholar 

  • Redell P, Diem HG, Dommergues YR (1991) Use of actinorhizal plants in arid and semiarid environments. In: Skujins J (ed) Semiarid lands and deserts. Dekker, New York, pp 469–485

    Google Scholar 

  • Rice EL (1964) Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. Ecology 45:824–837

    Google Scholar 

  • Rundel PW, Nilsen ET, Sharifi MR, Virginia RA, Jarrell WM, Kohl DH, Shearer GB (1982) Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran Desert. Plant Soil 67:343–353

    CAS  Google Scholar 

  • Rychert RC, Skujins J (1974) Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin Desert. Soil Sci Soc Am Proc 38:768–771

    CAS  Google Scholar 

  • Rychert R, Skujins J, Sorensen D, Porcella D (1978) Nitrogen fixation by lichens and free-living microorganisms in deserts. In: West NE, Skujins JJ (eds) Nitrogen in desert ecosystems. Dowden Hutchinson Ross, Stroudsburg, PA, pp 20–30

    Google Scholar 

  • Seastedt TR, Knapp AK. (1993) Consequences of non-equilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am Nat 141:621–633

    Google Scholar 

  • Schaeffer SM, Billings SA, Evans RD (2003) Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134:547–553

    PubMed  CAS  Google Scholar 

  • Scherer S, Ernst A, Chen TW, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 62:418–423

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic, San Diego, pp 98–100

    Google Scholar 

  • Schlesinger WH, Peterjohn WT (1991) Processes controlling ammonia volatilization from Chihuahuan desert soils. Soil Biol Biochem 23:637–642

    Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187

    Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WL, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Google Scholar 

  • Schlesinger WH, Abrahams AD, Parsons AJ, Wainwright J (1999) Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: I. Rainfall simulation experiments. Biogeochemistry 45:21–34

    Google Scholar 

  • Schlesinger WH, Ward TJ, Anderson J (2000) Nutrient losses in runoff from grassland and shrubland habitats in southern New Mexico: II. Field plots. Biogeochemistry 49:69–86

    CAS  Google Scholar 

  • Scott D, Billings WD (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecol Monogr 34:243–270

    Google Scholar 

  • Shapiro J (1973) Blue-green algae: why they become dominant. Science 179:382–384

    PubMed  CAS  Google Scholar 

  • Sharma KC, Krantz BA, Brown AL, Quick J (1968) Interaction of Zn and P in top and root of corn and tomato. Agron J 60:452–456

    Google Scholar 

  • Sinanis C, Keramidas VZ, Sakellariadis S (2003) Thermodynamics of potassium-magnesium exchange in two alfisols of northern Greece. Commun Soil Sci Plant Anal 34:439–456

    CAS  Google Scholar 

  • Singer A (1989) Illite in the hot aridic soil environment. Soil Sci 147:126–133

    CAS  Google Scholar 

  • Skarpe C, Henriksson E (1987) Nitrogen fixation by cyanobacterial crust and associative-symbiotic bacteria in western Kalahari, Botswana. Arid Soil Res Rehabil 1:55–59

    Google Scholar 

  • Smart DR, Stark JM, Diego V (1999) Resource limitation to nitric oxide emission from a sagebrush-steppe ecosystem. Biogeochemistry 47:63–86

    CAS  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J (1996) Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiol Ecol 21:149–156

    CAS  Google Scholar 

  • Stewart WDP (1966) Nitrogen fixation by free-living organisms II. Bacteria. In: Nitrogen fixation in plants. University of London, Athlone, London, pp 71–83

    Google Scholar 

  • Stewart WDP, Sampaio MJ, Isichei AO, Sylvester-Bradley R (1977) Nitrogen fixation by soil algae of temperate and tropical soils. In: Döbereiner J, Burris RH, Hollaender A, Franco AA, Neyra CA, Scott DB (eds) Limitations and potentials for biological nitrogen fixation in the tropics. Plenum, New York, pp 41–63

    Google Scholar 

  • Terry RE, Burns SJ (1987) Nitrogen fixation in cryptogamic soil crusts as affected by disturbance. In: Pinyon-Juniper Conference, Reno, NV, 13–16 January 1986. US Department of Agriculture, Forest Service, Intermountain Research Station, Reno, NV, pp 369–372

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Troeh FR, Thompson LM (1993) Soils and soil fertility. Oxford University Press, New York

    Google Scholar 

  • Ullah S, Breitenbeck GA, Faulkner SP (2005) Denitrification and N2O emission from forested and cultivated alluvial clay soil. Biogeochemistry 73:499–513

    CAS  Google Scholar 

  • UNESCO (1979) Map of the world distribution of arid regions. Accompanied by explanatory note. MAB Technical Notes, no 7. UNESCO, Paris

    Google Scholar 

  • Virginia RA, Jarrell WM, Franco-Vizcaino E (1982) Direct measurement of denitrification in a Prosopis (Mesquite) dominated Sonoran Desert ecosystem. Oecologia 53:120–122

    Google Scholar 

  • Virginia RA, Jarrell WM, Whitford WG, Freckman DW (1992) Soil biota and soil properties in the surface rooting zonze of mesquite (Prosopis glandulosa) in historical and recently desertified Chihuahuan Desert habitats. Biol Fertil Soils 14:90–98

    CAS  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Wallace A (1989) Comparative growth of four shrub species in a native desert soil and an amended non-calcareous soil and some unsolved problems in mineral nutrition of desert shrubs. In: Proceedings of the Symposium on Shrub Ecophysiology and Biotechnology, Gen. Tech. Rep. INT-256. US Dept. Agriculture Forest Service, Intermountain Research Station pp 169–172

    Google Scholar 

  • Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024

    PubMed  CAS  Google Scholar 

  • Wang S, Zheng W, Ren J, Zhang C (2002) Selectivity of various types of salt-resistant plants for K+ over Na+. J Arid Environ 52:457–472

    Google Scholar 

  • West NE (1991) Nutrient cycling in soils of semiarid and arid regions. In: Skujins J (ed) Semiarid lands and deserts. Dekker, New York, pp 295–332

    Google Scholar 

  • West NE, Skujins J (1977) Nitrogen cycle in North-American cold-winter semi-desert ecosystems. Oecol Plant 12:45–53

    CAS  Google Scholar 

  • West NE, Skujins J (eds) (1978) Nitrogen in desert ecosystems. US/IBP Synthesis Series vol 9. Dowden, Hutchinson & Ross, Stroudsburg, PA

    Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Academic, San Diego

    Google Scholar 

  • Wilcox BP, Breshears DD, Allen CD (2003) Ecohydrology of a resource-conserving semiarid woodland: temporal and spatial relationships and the role of disturbance. Ecol Monogr 73:223–239

    Google Scholar 

  • Williams EJ, Hutchinson GL, Fehsenfeld FC (1992) NOx and N2O emissions from soil. Global Biogeochem Cycl 6:351–38

    CAS  Google Scholar 

  • Woodward RA, Harper KT, Tiedemann AR (1984) An ecological consideration of the significance of cation-exchange capacity of roots of some Utah range plants. Plant Soil 79:169–180

    CAS  Google Scholar 

  • Yaalon DH, Jungreis C, Koyumjisky H (1972) Distribution and reorganization of manganese in three catenas of Mediterranean soils. Geoderma 7:71–78

    CAS  Google Scholar 

  • Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol 70:973–983

    PubMed  CAS  Google Scholar 

  • Xu S, An L, Feng H, Wang X, Li X (2002) The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment. J Arid Environ 51:437–447

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartley, A., Barger, N., Belnap, J., Okin, G.S. (2007). Dryland Ecosystems. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_10

Download citation

Publish with us

Policies and ethics