Advertisement

High Resolution Imaging of TGFβ3 Treated Human Keratinocyte via a Newly Developed Widefield Surface Plasmon Resonance Microscope

  • M. Mahadi Abdul Jamil
  • M. Youseffi
  • S. T. Britland
  • S. Liu
  • C. W. See
  • M. G. Somekh
  • M. C. T. Denyer
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 15)

Abstract

In this study high resolution imaging of human adult (HaCaTs) Keratinocytes cells using the newly developed Widefield Surface Plasmon Resonance (WSPR) system will be discussed. Surface Plasmon Resonance (SPR) occurs at the interface between a dielectric and a thin conducting layer when p-polarized light strikes at a specific angle thus excites free electrons and generates surface plasmon electromagnetic wave. The SPR excitation angle can be changed by the binding of bio-molecular species to the metallised layer, and is directly proportional to the refractive index and thickness of that molecular species. Our WSPR system provide high lateral resolution imaging close to 500 nanometers [1] and was used to investigate cell surface interactions under two different culture conditions: HaCaTs cultured on SPR substrate with Transforming Growth Factor β3 (TGFβ3) (50ng/ml) [2] and without TGFβ3. In less than 24 hours, HaCaTs cultured in the presence of TGFβ3 showed enhanced division and motility along with decreased cell attachment as compared with cells maintained in TGFβ3 free media. It is to be noted that cellular signaling by TGFβ3 is very important for enhancing tissue development in wound repair and that this study for the first time enabled optical interrogation of cell surface interface without the need for Immunostaining.

Keywords

Surface plasmons TGFβ3 HaCaTs Cell attachments High resolution imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. M. Mahadi, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and S. Marlafeka, “Monitoring immunostaining process of proteins by using a widefield surface plasmon microscope,” at Winter Meeting: Conf. on Craniofacial develp, St Anne’s College, Oxford, Conf. Proc: Journal of Anatomy vol. 206, pp. 515, 2005.Google Scholar
  2. 2.
    D. P. P. Vooijs, X. F. Walboomers, J. A. T. C. Parker, J. W. V. d. Hoff, and J. A. Jansen, “Transforming growth factor-β3-loaded micro-textured membranes for skin regeneration in dermal wounds,” Journal of Biomedical Materials Research Part A, vol. 70A, pp. 402–411, 2004.CrossRefGoogle Scholar
  3. 3.
    M. G. Somekh, Surface plasmon and surface wave microscopy, Optical Imaging and Microscopy, vol. 87. Berlin Heidelberg, 2003.Google Scholar
  4. 4.
    E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Zeitschrift Fur Naturforschung, vol. 23A, pp. 2135–2136, 1968.Google Scholar
  5. 5.
    H. Kano and W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measurement of LBK films,” Optics Communications, vol. 153, pp. 235–239, 1998.CrossRefGoogle Scholar
  6. 6.
    A. J. M. Mahadi, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and M. C. T. Denyer, “Applications of a novel high resolution widefield surface plasmon microscope in cell imaging and development of new binding assays,” Microscience 2006: ExCel, London, Conf. Proceedings: “High resolution live cell imaging” pp. 60, 2006.Google Scholar
  7. 7.
    G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” Journal of Microscopy, vol. 214, pp. 328–333, 2004.CrossRefPubMedGoogle Scholar
  8. 8.
    S. Marlefeka, S. T. Britland, S. Liu, P. C. Twigg, C. W. See, M. G. Somekh, and M. C. T. Denyer, “Imaging biomolecular nanofilms at micrometer lateral resolutions using widefield surface plasmon microscopy,” Conf. Proceedings: 3B2-03, Singapore, 2005.Google Scholar
  9. 9.
    M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Optics Communications, vol. 174, pp. 75–80, 2000.CrossRefGoogle Scholar
  10. 10.
    E. Nagao and J. A. Dvorak, “An integrated approach to the study of living cells by atomic force microscopy,” Journal of Microscopy, vol. 191, pp. 8–19, 1998.CrossRefPubMedGoogle Scholar
  11. 11.
    H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” Journal of Microscopy, vol. 191, pp. 1–7, 1998.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Mahadi Abdul Jamil
    • 2
    • 3
    • 5
    • 1
  • M. Youseffi
    • 3
  • S. T. Britland
    • 4
  • S. Liu
    • 6
  • C. W. See
    • 6
  • M. G. Somekh
    • 6
  • M. C. T. Denyer
    • 4
    • 5
  1. 1.SoEDT 4University of BradfordBradford, West YorkshireUK
  2. 2.Faculty of Electrical & Electronic Engineering, Department of Electronic EngineeringTun Hussein Onn College University of TechnologyBatu Pahat, JohorMalaysia
  3. 3.School of Engineering, Design & TechnologyUniversity of BradfordBradfordUK
  4. 4.School of PharmacyUniversity of BradfordBradfordUK
  5. 5.Institute of Pharmaceutical InnovationUniversity of BradfordBradfordUK
  6. 6.School of Electrical and Electronic EngineeringUniversity of NottinghamNottinghamUK

Personalised recommendations