Brain Plasticity and fMRI

  • B. Thomas
  • C. Sage
  • M. Eyssen
  • S. Kovacs
  • R. Peeters
  • S. Sunaert
Part of the Medical Radiology book series (MEDRAD)


Plasticity is the collective term used for a number of mechanisms that lead to molecular and/or structural alterations of an organism. These changes occur throughout life during learning processes, novel experiences as well as in response to injury. This chapter consists of a review of functional magnetic resonance imaging findings on plasticity phenomena occurring in response to brain injury, epilepsy, and congenital lesions. First, in a brief introduction to the phenomenon ‘plasticity’, a number of factors influencing plasticity phenomena and recovery from brain injury are discussed. Next, we discuss the occurrence of plasticity phenomena in a number of diseases. In the section on plasticity phenomena in patients with brain Tumors, both preoperative and postoperative plastic changes are considered, with a focus on the motor system. The section on plasticity phenomena in patients with epilepsy is mainly focused on the lateralization (or dominance) of language in these patients.


Supplementary Motor Area Mesial Temporal Lobe Epilepsy Brain Plasticity Language Dominance Language Lateralization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM (2003) Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 18:423–438PubMedCrossRefGoogle Scholar
  2. Alkadhi H, Kollias SS, Crelier GR, Golay X, Hepp-Reymond MC, Valavanis A (2000) Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. Am J Neuroradiol 21:1423–1433PubMedGoogle Scholar
  3. Anderson VA, Catroppa C, Rosenfeld J, Haritou F, Morse SA (2000) Recovery of memory function following traumatic brain injury in pre-school children. Brain Injury 14:679–692PubMedCrossRefGoogle Scholar
  4. Baciu M, Le Bas JF, Segebarth C, Benabid AL (2003) Presurgical fMRI evaluation of cerebral reorganization and motor deficit in patients with tumors and vascular malformations. Eur J Radiol 46:139–146PubMedCrossRefGoogle Scholar
  5. Berl MM, Balsamo LM, Xu B, Moore EN, Weinstein SL, Conry JA, Pearl PL, Sachs BC, Grandin CB, Frattali C, Ritter FJ, Sato S, Theodore WH, Gaillard WD (2005) Seizure focus affects regional language networks assessed by fMRI. Neurology 65:1604–1611PubMedCrossRefGoogle Scholar
  6. Bilecen D, Seifritz E, Radu EW, Schmid N, Wetzel S, Probst R, Scheffler K (2000) Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 54:765–767PubMedGoogle Scholar
  7. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, Benbadis S, Frost JA, Rao SM, Haughton VM (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984PubMedGoogle Scholar
  8. Brazdil M, Zakopcan J, Kuba R, Fanfrdlova Z, Rektor I (2003) Atypical hemispheric language dominance in left temporal lobe epilepsy as a result of the reorganization of language functions. Epilepsy Behav 4:414–419PubMedCrossRefGoogle Scholar
  9. Briellmann RS, Labate A, Harvey AS, Saling MM, Lillywhite L, Abbott DF, Jackson GD (2005) Language lateralisation is no different between patients with temporal lobe developmental tumours and hippocampal sclerosis. Epilepsia 46:334–335CrossRefGoogle Scholar
  10. Carpentier AC, Constable RT, Schlosser MJ, de Lotbiniere A, Piepmeier JM, Spencer DD, Awad IA (2001) Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg 94:946–954PubMedGoogle Scholar
  11. Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–773PubMedCrossRefGoogle Scholar
  12. Cohen LG, Weeks RA, Sadato N, Celnik P, Ishii K, Hallett M (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45:451–460PubMedCrossRefGoogle Scholar
  13. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527PubMedGoogle Scholar
  14. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015PubMedCrossRefGoogle Scholar
  15. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132PubMedCrossRefGoogle Scholar
  16. Duffau H (2001) Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry 70:506–513PubMedCrossRefGoogle Scholar
  17. Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4:476–486PubMedCrossRefGoogle Scholar
  18. Duffau H, Gatignol P, Mandonnet E, Denvil D, Sichez N, Leroy M, Lopes M, Taillandier L, Bitar A, Sichez JP, Van Effenterre R, Capelle L (2004) Functional recovery after surgical resection of eloquent brain areas invaded by lowgrade gliomas: the use of cerebral plasticity. Neurosurgery 55:468CrossRefGoogle Scholar
  19. Elbert T, Rockstroh B (2004) Reorganization of human cerebral cortex: the range of changes following use and injury. Neuroscientist 10:129–141PubMedCrossRefGoogle Scholar
  20. Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91:238–250PubMedCrossRefGoogle Scholar
  21. Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, Burnod Y, Maier MA (2002) Longitudinal study of motor recovery after stroke — recruitment and focusing of brain activation. Stroke 33:1610–1617PubMedCrossRefGoogle Scholar
  22. Finger S, Wolf C (1988) The Kennard effect before Kennard — the early history of age and brain-lesions. Arch Neurol 45:1136–1142PubMedGoogle Scholar
  23. Friston KJ, Price CJ (2001) Generative models, brain function and neuroimaging. Scand J Psychol 42:167–177PubMedCrossRefGoogle Scholar
  24. Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129:791–808PubMedCrossRefGoogle Scholar
  25. Hallett M (1998) The neurophysiology of dystonia. Arch Neurol 55:601–603PubMedCrossRefGoogle Scholar
  26. Helmstaedter C, Fritz NE, Gonzalez Perez PA, Elger CE, Weber B (2006) Shift-back of right into left hemisphere language dominance after control of epileptic seizures: evidence for epilepsy driven functional cerebral organization. Epilepsia Res (in press)Google Scholar
  27. Hertz-Pannier L, Chiron C, Vera P, Van de Morteele PF, Kaminska A, Bourgeois M, Hollo A, Ville D, Cieuta C, Dulac O, Brunelle F, LeBihan D (2001) Functional imaging in the work-up of childhood epilepsy. Child Nerv Syst 17:223–228CrossRefGoogle Scholar
  28. Hertz-Pannier L, Chiron C, Jambaque I, Renaux-Kieffer V, Van de Moortele PF, Delalande O, Fohlen M, Brunelle F, Le Bihan D (2002) Late plasticity for language in a child’s non-dominant hemisphere — a pre-and post-surgery fMRI study. Brain 125:361–372PubMedCrossRefGoogle Scholar
  29. Holmes GL, Gairsa JL, Chevassus-Au-Louis N, Ben-Ari Y (1998) Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 44:845–857PubMedCrossRefGoogle Scholar
  30. Janszky J, Mertens M, Janszky I, Ebner A, Woermann FG (2006) Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study. Epilepsia 47:921–927PubMedCrossRefGoogle Scholar
  31. Johnston MV (2004) Clinical disorders of brain plasticity. Brain Devel 26:73–80CrossRefGoogle Scholar
  32. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191PubMedCrossRefGoogle Scholar
  33. Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Ringelstein EB, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123(12):2512–2518PubMedCrossRefGoogle Scholar
  34. Kolb B, Cioe J (2000) Recovery from early cortical damage in rats, VIII. Earlier may be worse: behavioural dysfunction and abnormal cerebral morphogenesis following perinatal frontal cortical lesions in the rat. Neuropharmacology 39:756–764PubMedCrossRefGoogle Scholar
  35. Krainik A, Lehericy S, Duffau H, Cornu P, Capelle L, Menu Y, Le Bihan D, Marsault C (2001a) Functional recovery following lesion of the Supplementary Motor Area: a fMRI study. Neuroimage 13:S1206CrossRefGoogle Scholar
  36. Krainik A, Lehericy S, Duffau H, Cornu P, Nence Y, Marsault CJ (2001b) Functional recovery after lesion of the supplementary motor area: an fMRI study. Radiology 221:132CrossRefGoogle Scholar
  37. Krainik A, Lehericy S, Duffau H, Vlaicu M, Poupon F, Capelle L, Cornu P, Clemenceau S, Sahel M, Valery CA, Boch AL, Mangin JF, Le Bihan D, Marsault C (2001c) Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57:871–878PubMedGoogle Scholar
  38. Krainik A, Duffau H, Capelle L, Cornu P, Boch AL, Mangin JF, Le Bihan D, Marsault C, Chiras J, Lehericy S (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 62:1323–1332PubMedGoogle Scholar
  39. Krakauer JW (2005) Arm function after stroke: from physiology to recovery. Semin Neurol 25:384–395PubMedCrossRefGoogle Scholar
  40. Krings T, Reinges MHT, Thiex R, Gilsbach JM, Thron A (2001) Functional and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts. J Neurosurg 95:816–824PubMedGoogle Scholar
  41. Krings T, Topper R, Willmes K, Reinges MHT, Gilsbach JM, Thron A (2002) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58:381–390PubMedGoogle Scholar
  42. Kubova H, Druga R, Lukasiuk K, Suchomelova L, Haugvicova R, Jirmanova I, Pitkanen A (2001) Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 21:3593–3599PubMedGoogle Scholar
  43. Lee RG, Vandonkelaar P (1995) Mechanisms underlying functional recovery following stroke. Can J Neurol Sci 22:257–263PubMedGoogle Scholar
  44. Liegeois F, Connelly A, Cross JH, Boyd SG, Gadian DG, Vargha-Khadem F, Baldeweg T (2004) Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain 127:1229–1236PubMedCrossRefGoogle Scholar
  45. Liu Z, Yang Y, Silveira DC, Sarkisian MR, Tandon P, Huang LT, Stafstrom CE, Holmes GL (1999) Consequences of recurrent seizures during early brain development. Neuroscience 92:1443–1454PubMedCrossRefGoogle Scholar
  46. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nature Rev Neurosci 7:179–193CrossRefGoogle Scholar
  47. Malenka RC (2003) Synaptic plasticity and AMPA receptor trafficking. Glutamate Disorders Cognit Motiv 1003:1–11Google Scholar
  48. Manto M, ben Taib NO, Luft AR (2006) Modulation of excitability as an early change leading to structural adaptation in the motor cortex. J Neurosci Res 83:177–180PubMedCrossRefGoogle Scholar
  49. Martino G (2004) How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol 3:372–378PubMedCrossRefGoogle Scholar
  50. Muhlnickel W, Elbert T, Taub E, Flor H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95:10340–10343PubMedCrossRefGoogle Scholar
  51. Murdoch J, Hall R (1990) Brain protection — physiological and pharmacological considerations. Part 1. The physiology of brain injury. Can J Anaesth-J Can Anesth 37:663–671Google Scholar
  52. Nudo RJ (2003) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehab Med 35:7–10CrossRefGoogle Scholar
  53. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401PubMedCrossRefGoogle Scholar
  54. Price CJ, Warburton EA, Moore CJ, Frackowiak RSJ, Friston KJ (2001) Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions. J Cognit Neurosci 13:419–429CrossRefGoogle Scholar
  55. Prins ML, Hovda DA (2001) Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury. J Neurotrauma 18:31–46PubMedCrossRefGoogle Scholar
  56. Rasmussen T, Milner B (1977) The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann N Y Acad Sci 299:355–369PubMedCrossRefGoogle Scholar
  57. Rausch R, Walsh GO (1984) Right-hemisphere language dominance in right-handed epileptic patients. Archiv Neurol 41:1077–1080Google Scholar
  58. Reinges MHT, Krings T, Rohde V, Hans FJ, Willmes K, Thron A, Gilsbach JM (2005) Prospective demonstration of short-term motor plasticity following acquired central pareses. Neuroimage 24:1248–1255PubMedCrossRefGoogle Scholar
  59. Rijntjes M (2006) Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Curr Opin Neurol 19:76–83PubMedCrossRefGoogle Scholar
  60. Satz P (1979) Test of some models of hemispheric speech organization in the left-handed and right-handed. Science 203:1131–1133PubMedCrossRefGoogle Scholar
  61. Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, Weiller C (2006) Dynamics of language reorganization after stroke. Brain 129:1371–1384PubMedCrossRefGoogle Scholar
  62. Schiffbauer H, Ferrari P, Rowley HA, Berger MS, Roberts TPL (2001) Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 49:1313–1320PubMedCrossRefGoogle Scholar
  63. Slavin S, Laurence S, Stein DG (1988) Another look at vicariation. In: Finger S, LeVere TE, Almli CR, Stein DG (eds) Brain injury and recovery: theoretical and controversial issues. Plenum Press, New York, pp 165–178Google Scholar
  64. Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PSF, Brewer CC, Perry HM, Morris GL, Mueller WM (1999) Language dominance in neurologically normal and epilepsy subjects-a functional MRI study. Brain 122:2033–2045PubMedCrossRefGoogle Scholar
  65. Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krageloh-Mann I (2002) Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. Neuroimage 16:954–967PubMedCrossRefGoogle Scholar
  66. Stein DG, Finger S, Hart T (1983) Brain-damage and recovery — problems and perspectives. Behav Neural Biol 37:185–222PubMedCrossRefGoogle Scholar
  67. Sunaert S (2006) Presurgical planning for tumor resectioning. J Magn Reson Imaging 23:887–905PubMedCrossRefGoogle Scholar
  68. Teasell R (2003) Stroke recovery and rehabilitation. Stroke 34:365–366PubMedCrossRefGoogle Scholar
  69. Thirumala P, Hier DB, Patel P (2002) Motor recovery after stroke: lessons from functional brain imaging. Neurol Res 24:453–458PubMedCrossRefGoogle Scholar
  70. Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, De Cock P, Sunaert S (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128:2562–2577PubMedCrossRefGoogle Scholar
  71. Trudeau N, Poulin-Dubois D, Joanette Y (2000) Language development following brain injury in early childhood: a longitudinal case study. Intl J Lang Commun Disorders 35:227–249CrossRefGoogle Scholar
  72. Voets NL, Adcock JE, Flitney DE, Behrens TEJ, Hart Y, Stacey R, Carpenter K, Matthews PM (2006) Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain 129:754–766PubMedCrossRefGoogle Scholar
  73. Wang XQ, Merzenich MM, Sameshima K, Jenkins WM (1995) Remodeling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378:71–75PubMedCrossRefGoogle Scholar
  74. Ward NS, Thompson AJ, Frackowiak RSJ (2002) Spontaneous reorganization of the motor system after stroke: a longitudinal functional magnetic resonance imaging study. Ann Neurol 52:S86–S87CrossRefGoogle Scholar
  75. Weber B, Wellmer J, Reuber M, Mormann F, Weis S, Urbach H, Ruhlmann J, Elger CE, Fernandez G (2006) Left hippocampal pathology is associated with atypical language lateralization in patients with focal epilepsy. Brain 129:346–351PubMedCrossRefGoogle Scholar
  76. Weiller C, Rijntjes M (1999) Learning, plasticity, and recovery in the central nervous system. Exp Brain Res 128:134–138PubMedCrossRefGoogle Scholar
  77. Weiller C, May A, Sach M, Buhmann C, Rijntjes M (2006) Role of functional imaging in neurological disorders. J Magn Reson Imaging 23:840–850PubMedCrossRefGoogle Scholar
  78. Woermann FG, Jokeit H, Luerding R, Freitag H, Schulz R, Guertler S, Okujava M, Wolf P, Tuxhorn I, Ebner A (2003) Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 61:699–701PubMedGoogle Scholar
  79. Yuan WH, Szaflarski JP, Schmithorst VJ, Schapiro M, Byars AW, Strawsburg RH, Holland SK (2006) fMRI shows atypical language lateralization in pediatric epilepsy patients. Epilepsia 47:593–600PubMedCrossRefGoogle Scholar
  80. Zemke AC, Heagerty PJ, Lee C, Cramer SC (2003) Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 34:E23–E26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • B. Thomas
    • 1
  • C. Sage
    • 2
  • M. Eyssen
    • 2
  • S. Kovacs
    • 2
  • R. Peeters
    • 2
  • S. Sunaert
    • 2
  1. 1.Department of RadiologySree Chitra Tirunal Institute for Medical Sciences and TechnologyTrivandrum, KeralaIndia
  2. 2.Department of RadiologyUniversity Hospital of the Catholic University of LeuvenLeuvenBelgium

Personalised recommendations