Advertisement

Presurgical Functional MRI in Patients with Brain Tumors

  • Christoph Stippich
  • Maria Blatow
  • Karsten Krakow
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Neurosurgery in functionally important brain sites carries a high risk for surgery induced neurological deficits. In patients with brain tumors fMRI facilitates the selection of a safe treatment and to plan and perform function preserving surgery. However, fMRI has not yet reached the status of an established and standardized diagnostic neuroimaging procedure and still needs to be performed in clinical research trials. Preoperative fMRI is performed exclusively in individual patients and therefore differs fundamentally from research applications in the neurosciences.

Keywords

Brain Tumor Functional Magnetic Resonance Imaging Bold Signal Functional Magnetic Resonance Imaging Precentral Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achten E, Jackson GD, et al (1999) Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 210(2):529–538PubMedGoogle Scholar
  2. Akbar M, Stippich C and Aschoff A (2005) Magnetic resonance imaging and cerebrospinal fluid shunt valves. N Engl J Med 353(13):1413–1414PubMedGoogle Scholar
  3. Alkadhi H, Kollias SS, et al (2000) Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. AJNR Am J Neuroradiol 21(8):1423–1433PubMedGoogle Scholar
  4. Atlas SW, Howard RS 2nd, et al (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38(2):329–338PubMedGoogle Scholar
  5. Avila C, Barros-Loscertales A, et al (2006) Memory lateralization with 2 functional MR imaging tasks in patients with lesions in the temporal lobe. AJNR Am J Neuroradiol 27(3):498–503.PubMedGoogle Scholar
  6. Baciu M, Le Bas JF, et al (2003) Presurgical fMRI evaluation of cerebral reorganization and motor deficit in patients with tumors and vascular malformations. Eur J Radiol 46(2):139–146PubMedGoogle Scholar
  7. Bahn MM, Lin W, et al (1997) Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. AJR Am J Roentgenol 169(2):575–579PubMedGoogle Scholar
  8. Bandettini PA, Wong EC, et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397PubMedGoogle Scholar
  9. Baudendistel K, Schad LR, et al (1996) Monitoring of task performance during functional magnetic resonance imaging of sensorimotor cortex at 1.5 T. Magn Reson Imaging 14(1):51–58PubMedGoogle Scholar
  10. Baumann SB, Noll DC, et al (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1(4):191–197PubMedGoogle Scholar
  11. Baxendale S (2002) The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol 24(5):664–676PubMedGoogle Scholar
  12. Bazin B, Cohen L, et al (2000) Study of hemispheric lateralization of language regions by functional MRI. Validation with the Wada test. Rev Neurol (Paris) 156(2):145–148PubMedGoogle Scholar
  13. Belliveau JW, Kennedy Jr. DN, et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719PubMedGoogle Scholar
  14. Bello L, Acerbi F, et al (2006) Intraoperative language localization in multilingual patients with gliomas. Neurosurgery 59(1):115–125; discussion 115–125PubMedGoogle Scholar
  15. Benbadis SR, Binder JR, et al (1998) Is speech arrest during wada testing a valid method for determining hemispheric representation of language? Brain Lang 65(3):441–446PubMedGoogle Scholar
  16. Benson RR, FitzGerald DB, et al (1999) Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52(4):798–809PubMedGoogle Scholar
  17. Benson RR, Logan WJ, et al (1996). Functional MRI localization of language in a 9-year-old child. Can J Neurol Sci 23(3):213–219PubMedGoogle Scholar
  18. Berger H (1929) Über das Elektroenzephalogramm des Menschen. Arch Psychiatr Nervenk 87:527–570.Google Scholar
  19. Binder JR, Achten E, et al (2002) Functional MRI in epilepsy. Epilepsia 43(Suppl 1):51–63Google Scholar
  20. Binder JR, Frost JA, et al (1997). Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17(1):353–62.PubMedGoogle Scholar
  21. Binder JR, Frost JA, et al (1999) Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 11(1):80–95PubMedGoogle Scholar
  22. Binder JR, Frost JA, et al (2000). Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10(5):512–28.PubMedGoogle Scholar
  23. Binder JR, Rao SM, et al (1995). Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 52(6): 593–601.PubMedGoogle Scholar
  24. Binder JR, Swanson SJ, et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46(4):978–984PubMedGoogle Scholar
  25. Bittar RG, Olivier A, et al (1999) Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg 90(3):478–483PubMedGoogle Scholar
  26. Bittar RG, Olivier A, et al (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921PubMedGoogle Scholar
  27. Bittar RG, Olivier A, et al (2000) Cortical motor and somatosensory representation: effect of cerebral lesions. J Neurosurg 92(2):242–248PubMedGoogle Scholar
  28. Bogen JE (1976) Wernicke’s region — where is it? Ann NY Acad Sci 290: 834–843Google Scholar
  29. Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188PubMedGoogle Scholar
  30. Bookheimer SY (2000) Methodological issues in pediatric neuroimaging. Ment Retard Dev Disabil Res Rev 6(3): 161–165PubMedGoogle Scholar
  31. Buckner RL, Bandettini PA, et al (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging.“ Proc Natl Acad Sci USA 93(25):14878–14883PubMedGoogle Scholar
  32. Carpentier A, Pugh KR, et al (2001) Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy. Epilepsia 42(10):1241–1254PubMedGoogle Scholar
  33. Carpentier AC, Constable RT, et al (2001) Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg 94(6):946–954PubMedGoogle Scholar
  34. Cedzich C, Taniguchi M, et al (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38(5):962–970PubMedGoogle Scholar
  35. Cosgrove GR, Buchbinder BR and Jiang H (1996) Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am 7(2):313–322PubMedGoogle Scholar
  36. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173PubMedGoogle Scholar
  37. Cuenod CA, Bookheimer SY, et al (1995) Functional MRI during word generation, using conventional equipment: a potential tool for language localization in the clinical environment. Neurology 45(10):1821–1827PubMedGoogle Scholar
  38. Davis, FG, Freels S, et al (1998). Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J Neurosurg 88(1): 1–10PubMedGoogle Scholar
  39. Davis FG, McCarthy B and Jukich P (1999) The descriptive epidemiology of brain tumors. Neuroimaging Clin N Am 9(4): 581–594PubMedGoogle Scholar
  40. Davis FG, McCarthy BJ, et al (1999) The conditional probability of survival of patients with primary malignant brain tumors: surveillance, epidemiology, and end results (SEER) data. Cancer 85(2):485–491PubMedGoogle Scholar
  41. Deblaere K, Backes WH, et al (2002) Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology 44(8):667–673PubMedGoogle Scholar
  42. Desmond JE, Sum JM, et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118 (Pt 6):1411–1419PubMedGoogle Scholar
  43. Duffau H (2001). Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry 70(4):506–513PubMedGoogle Scholar
  44. Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4(8):476–486PubMedGoogle Scholar
  45. Duffau H (2006). New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity — a review. J Neurooncol 79(1):77–115PubMedGoogle Scholar
  46. Duffau H, Bauchet L, et al (2001) Functional compensation of the left dominant insula for language. Neuroreport 12(10):2159–2163PubMedGoogle Scholar
  47. Duffau H, Capelle L, et al (1999) Intra-operative direct electrical stimulations of the central nervous system: the Salpetriere experience with 60 patients. Acta Neurochir (Wien) 141(11):1157–1167Google Scholar
  48. Duffau H, Capelle L, et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125 (Pt 1): 199–214Google Scholar
  49. Duffau H, Capelle L, et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778PubMedGoogle Scholar
  50. Duffau H, Denvil D and Capelle L (2002) Long term reshaping of language, sensory, and motor maps after glioma resection: a new parameter to integrate in the surgical strategy. J Neurol Neurosurg Psychiatry 72(4):511–56.PubMedGoogle Scholar
  51. Duffau H, Sichez JP and Lehericy S (2000) Intraoperative unmasking of brain redundant motor sites during resection of a precentral angioma: evidence using direct cortical stimulation. Ann Neurol 47(1):132–135.PubMedGoogle Scholar
  52. Dymarkowski S, Sunaert S, et al (1998) Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol 8(9):1573–1580.PubMedGoogle Scholar
  53. Fandino J, Kollias SS, et al (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91(2):238–250.PubMedGoogle Scholar
  54. Fernandez G, de Greiff A, et al (2001) Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage 14(3):585–594.PubMedGoogle Scholar
  55. Fesl G, Moriggl, et al (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20(1):601–610.PubMedGoogle Scholar
  56. FitzGerald DB, Cosgrove GR, et al (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 18(8):1529–1539.PubMedGoogle Scholar
  57. Fox PT, Mintun MA, et al (1986) Mapping human visual cortex with positron emission tomography. Nature 323(6091):806–809.PubMedGoogle Scholar
  58. Frahm J, Merboldt KD, et al (1994) Brain or vein — oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7(1–2):45–53.PubMedGoogle Scholar
  59. Friston K (1996) Statistical parametric mapping and other analyses of functional imaging data. Brain mapping: the methods. MJ Toga AW. New York, Academic press: 363–386.Google Scholar
  60. Frost JA, Binder JR, et al (1999) Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain 122 (Pt 2):199–208.Google Scholar
  61. Gabrieli JD, Poldrack RA and Desmond JE (1998) The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci USA 95(3):906–913.PubMedGoogle Scholar
  62. Gaillard WD, Balsamo L, et al (2002) Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 59(2):256–265.PubMedGoogle Scholar
  63. Gaillard WD, Bookheimer SY and Cohen M (2000) The use of fMRI in neocortical epilepsy. Adv Neurol 84:391–404.PubMedGoogle Scholar
  64. Gaillard WD, Grandin GB and Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13(2):239–249.PubMedGoogle Scholar
  65. Gaillard WD, Hertz-Pannier L, et al (2000) Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology 54(1):180–185.PubMedGoogle Scholar
  66. Gaillard WD, Pugliese M, et al (2001) Cortical localization of reading in normal children: an fMRI language study. Neurology 57(1):47–54.PubMedGoogle Scholar
  67. Gasser T, Ganslandt O, et al (2005) Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 26(3):685–693.PubMedGoogle Scholar
  68. Georgi JC, Stippich C, et al (2004) Active deep brain stimulation during MRI: a feasibility study. Magn Reson Med 51(2):380–388.PubMedGoogle Scholar
  69. Geschwind N (1971) Current concepts: aphasia. N Engl J Med 284(12):654–656.PubMedGoogle Scholar
  70. Gevins A (1995) High-resolution electroencephalographic studies of cognition. Adv Neurol 66:181–195; discussion 195–198.PubMedGoogle Scholar
  71. Gevins A, Leong H, et al (1995) Mapping cognitive brain function with modern high-resolution electroencephalography. Trends Neurosci 18(10):429–436.PubMedGoogle Scholar
  72. Golaszewski SM, Siedentopf CM, et al (2004) Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62(12):2262–2269.PubMedGoogle Scholar
  73. Golaszewski SM, Siedentopf CM, et al (2006) Human brain structures related to plantar vibrotactile stimulation: a functional magnetic resonance imaging study. Neuroimage 29(3):923–239.PubMedGoogle Scholar
  74. Golaszewski SM, Zschiegner F, et al (2002) A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex. Neurosci Lett 324(2):125–128.PubMedGoogle Scholar
  75. Gold S, Christian B, et al (1998) Functional MRI statistical software packages: a comparative analysis. Hum Brain Mapp 6(2):73–84.PubMedGoogle Scholar
  76. Grabowski TJ (2000) Investigating language with functional neuroimaging. Brain mapping: the systems. MJ Toga AW. San Diego, San Francisco, New York, Boston, London, Sydney, Tokio: Academic Press:425–461.Google Scholar
  77. Grummich P, Nimsky C, et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: A clinical study on the difference between and congruence of both modalities. Neuroimage 32(4):1793–1803.PubMedGoogle Scholar
  78. Haberg A, Kvistad KA, et al (2004). Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54(4):902–914; discussion 914–915.PubMedGoogle Scholar
  79. Hajnal JV, Myers R, et al (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31(3):283–291.PubMedGoogle Scholar
  80. Hall WA, Liu H and Truwit CL (2005) Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 64(1):20–27; discussion 27.PubMedGoogle Scholar
  81. Hämäläinen M, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumen-tatation and applications to noninvasive studies of the working human brain. Review of modern physics 65:413–48Google Scholar
  82. Hammeke TA, Bellgowan PS and Binder JR (2000) fMRI: methodology — cognitive function mapping. Adv Neurol 83:221–233.PubMedGoogle Scholar
  83. Hammeke TA, Yetkin FZ, et al (1994) Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery 35(4):677–681.PubMedGoogle Scholar
  84. Hari R and Ilmoniemi RJ (1986) Cerebral magnetic fields. Crit Rev Biomed Eng 14(2):93–126.PubMedGoogle Scholar
  85. Hasegawa M, Carpenter PA and Just MA (2002). An fMRI study of bilingual sentence comprehension and workload. Neuroimage 15(3):647–660.PubMedGoogle Scholar
  86. Herholz K, Reulen HJ, et al (1997) Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery 41(6):1253–1260; discussion 1260–1262.PubMedGoogle Scholar
  87. Hermann BP, Perrine K, et al (1999) Visual confrontation naming following left anterior temporal lobectomy: a comparison of surgical approaches. Neuropsychology 13(1):3–9.PubMedGoogle Scholar
  88. Hernandez AE, Dapretto M, et al (2001) Language switching and language representation in Spanish-English bilinguals: an fMRI study. Neuroimage 14(2):510–520.PubMedGoogle Scholar
  89. Hertz-Pannier L, Chiron C, et al (2002) Late plasticity for language in a child’s non-dominant hemisphere: a pre-and post-surgery fMRI study. Brain 125 (Pt 2):361–372.PubMedGoogle Scholar
  90. Hertz-Pannier L, Gaillard WD, et al (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48(4):1003–1012.PubMedGoogle Scholar
  91. Hinke RM, Hu X, et al (1993) Functional magnetic resonance imaging of Broca’s area during internal speech. Neuroreport 4(6):675–678.PubMedGoogle Scholar
  92. Hirsch J, Ruge MI, et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47(3):711–721; discussion 721–722.PubMedGoogle Scholar
  93. Hoeller M, Krings T, et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144(3):279–284; discussion 284.Google Scholar
  94. Holman BL and Devous Sr. MD (1992) Functional brain SPECT: the emergence of a powerful clinical method. J Nucl Med 33(10):1888–1904.PubMedGoogle Scholar
  95. Holodny AI, Schulder M, et al (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 20(4):609–612.PubMedGoogle Scholar
  96. Holodny AI, Schulder M, et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422.PubMedGoogle Scholar
  97. Holodny AI, Schulder M, et al (2002) Translocation of Broca’s area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma. J Comput Assist Tomogr 26(6):941–943.PubMedGoogle Scholar
  98. Holodny AI, Schwartz TH, et al (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95(6):1082.PubMedGoogle Scholar
  99. Hou BL, Bradbury M et al (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32(2):489–497.PubMedGoogle Scholar
  100. Hsu CC, Wu MT and Lee C (2001) Robust image registration for functional magnetic resonance imaging of the brain. Med Biol Eng Comput 39(5):517–524.PubMedGoogle Scholar
  101. Hulvershorn J, Bloy L, et al (2005) Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time. Neuroimage 24(1):216–223.PubMedGoogle Scholar
  102. Hulvershorn J, Bloy L, et al (2005) Temporal resolving power of spin echo and gradient echo fMRI at 3T with apparent diffusion coefficient compartmentalization. Hum Brain Mapp 25(2):247–258.PubMedGoogle Scholar
  103. Illes J, Francis WS, et al (1999) Convergent cortical representation of semantic processing in bilinguals. Brain Lang 70(3):347–363.PubMedGoogle Scholar
  104. Jack Jr. CR, Thompson PM, et al (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190(1):85–92.PubMedGoogle Scholar
  105. Jacobs AH, Kracht LW, et al (2005) Imaging in neurooncology. NeuroRx 2(2):333–347.PubMedGoogle Scholar
  106. Just MA, Carpenter PA, et al (1996) Brain activation modulated by sentence comprehension. Science 274(5284):114–116.PubMedGoogle Scholar
  107. Kampe KK, Jones RA and Auer DP (2000) Frequency dependence of the functional MRI response after electrical median nerve stimulation. Hum Brain Mapp 9(2):106–114.PubMedGoogle Scholar
  108. Killgore WD, Glosser, et al (1999) Functional MRI and the Wada test provide complementary information for predicting post-operative seizure control. Seizure 8(8):450–455.PubMedGoogle Scholar
  109. Kim KH, Relkin NR, et al (1997) Distinct cortical areas associated with native and second languages. Nature 388(6638):171–174.PubMedGoogle Scholar
  110. Kim MJ, Holodny AI, et al (2005) The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR Am J Neuroradiol 26(8):1980–1985.PubMedGoogle Scholar
  111. Klein D, Milner B, et al (1995) The neural substrates underlying word generation: a bilingual functional-imaging study. Proc Natl Acad Sci USA 92(7):2899–2903.PubMedGoogle Scholar
  112. Kober H, Nimsky C, et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228.PubMedGoogle Scholar
  113. Kokkonen SM, Kiviniemi V, et al (2005) Effect of brain surgery on auditory and motor cortex activation: a preliminary functional magnetic resonance imaging study. Neurosurgery 57(2):249–256; discussion 249–256.PubMedGoogle Scholar
  114. Konrad F, Nennig E, et al (2005) Does the individual adaptation of standardized speech paradigmas for clinical functional magnetic resonance imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca’s and Wernicke’s areas. Rofo 177(3):381–385.PubMedGoogle Scholar
  115. Krainik A, Duffau H, et al (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 62(8):1323–1332.PubMedGoogle Scholar
  116. Krainik A, Lehericy S, et al (2001) Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57(5):871–878.PubMedGoogle Scholar
  117. Krainik A, Lehericy S, et al (2003) Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60(4):587–594.PubMedGoogle Scholar
  118. Krings T, Buchbinder, et al (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48(5):1406–1416.PubMedGoogle Scholar
  119. Krings T, Erberich SG, et al (1999) MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol 20(10):1907–1414.PubMedGoogle Scholar
  120. Krings T, MH Reinges, et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760.PubMedGoogle Scholar
  121. Krings T, Reinges MH, et al (2002) Factors related to the magnitude of T2* MR signal changes during functional imaging. Neuroradiology 44(6):459–466.PubMedGoogle Scholar
  122. Krings T, Reul J, et al (1998) Functional magnetic resonance mapping of sensory motor cortex for image-guided neurosurgical intervention. Acta Neurochir (Wien) 140(3):215–222.Google Scholar
  123. Krings T, R Topper, et al (2002) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58(3):381–390.PubMedGoogle Scholar
  124. Krishnan R, Raabe A, et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55(4):904–914; discusssion 914–915.PubMedGoogle Scholar
  125. Kurth R, Villringer K, et al (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9(2):207–212.PubMedGoogle Scholar
  126. Kwong KK, Belliveau JW, et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–5679.PubMedGoogle Scholar
  127. Landis SH, Murray T, et al (1999) Cancer statistics, 1999. CA Cancer J Clin 49(1):8–31, 1.PubMedGoogle Scholar
  128. Latchaw RE, Ugurbil K and Hu X (1995) Functional MR imaging of perceptual and cognitive functions. Neuroimaging Clin N Am 5(2):193–205.PubMedGoogle Scholar
  129. Lazar RM, Marshall RS, et al (1997) Anterior translocation of language in patients with left cerebral arteriovenous malformation. Neurology 49(3):802–808.PubMedGoogle Scholar
  130. Lee CC, Grimm RC, et al (1998) A prospective approach to correct for inter-image head rotation in fMRI. Magn Reson Med 39(2):234–243.PubMedGoogle Scholar
  131. Lee CC, Jack Jr. CR, et al (1996) Real-time adaptive motion correction in functional MRI. Magn Reson Med 36(3):436–444.PubMedGoogle Scholar
  132. Lee CC, Jack Jr. CR and Riederer SJ (1998) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR Am J Neuroradiol 19(5):847–852.PubMedGoogle Scholar
  133. Lee CC, Jack Jr. CR, et al (1998) Real-time reconstruction and high-speed processing in functional MR imaging. AJNR Am J Neuroradiol 19(7):1297–1300.PubMedGoogle Scholar
  134. Lee CC, Ward HA, et al (1999) Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol 20(8):1511–1519.PubMedGoogle Scholar
  135. Lehericy S, Biondi A, et al (2002) Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology 223(3):672–682.PubMedGoogle Scholar
  136. Lehericy S, Cohen L, et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54(8):1625–1633.PubMedGoogle Scholar
  137. Lehericy S, Duffau H, et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598.PubMedGoogle Scholar
  138. Lichtheim L (1885) On aphasia. Brain 7:433–484.Google Scholar
  139. Liu G and Ogawa S (2006) EPI image reconstruction with correction of distortion and signal losses. J Magn Reson Imaging 24(3):683–689.PubMedGoogle Scholar
  140. Liu H, Hall WA and Truwit CL (2003) The roles of functional MRI in MR-guided neurosurgery in a combined 1.5 Tesla MR-operating room. Acta Neurochir Suppl 85:127–135.PubMedGoogle Scholar
  141. Liu WC, Feldman SC, et al (2005) The effect of tumour type and distance on activation in the motor cortex. Neuroradiology 47(11):813–819.PubMedGoogle Scholar
  142. Logan WJ (1999) Functional magnetic resonance imaging in children. Semin Pediatr Neurol 6(2):78–86.PubMedGoogle Scholar
  143. Logothetis NK (2002) The neural basis of the blood-oxygen level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037.PubMedGoogle Scholar
  144. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971.PubMedGoogle Scholar
  145. Logothetis NK, Pauls J, et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157.PubMedGoogle Scholar
  146. Logothetis NK and J Pfeuffer (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531.PubMedGoogle Scholar
  147. Logothetis NK and Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769.PubMedGoogle Scholar
  148. Ludemann L, Forschler A, et al (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23(4):435–443.PubMedGoogle Scholar
  149. Lurito JT, Lowe MJ, et al (2000) Comparison of fMRI and intra-operative direct cortical stimulation in localization of receptive language areas. J Comput Assist Tomogr 24(1):99–105.PubMedGoogle Scholar
  150. Majos A, Tybor K, et al (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15(6):1148–1158.PubMedGoogle Scholar
  151. Mazziotta JC, Phelps ME, et al (1982) Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology 32(9):921–937.PubMedGoogle Scholar
  152. Menon RS, Ogawa S, et al (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33(3):453–459.PubMedGoogle Scholar
  153. Moller M, Freund M, et al (2005) Real time fMRI: a tool for the routine presurgical localisation of the motor cortex. Eur Radiol 15(2):292–295.PubMedGoogle Scholar
  154. Morris GL 3rd, Mueller, et al (1994) Functional magnetic resonance imaging in partial epilepsy. Epilepsia 35(6):1194–1198.PubMedGoogle Scholar
  155. Mueller WM, Yetkin FZ, et al (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39(3):515–520; discussion 520–521.PubMedGoogle Scholar
  156. Naidich TP, Hof PR, et al (2001) Anatomic substrates of language: emphasizing speech. Neuroimaging Clin N Am 11(2):305–341, ix.PubMedGoogle Scholar
  157. Nimsky C, Ganslandt O, et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28(5):482–487.PubMedGoogle Scholar
  158. Nitschke MF, Melchert, et al (1998) Preoperative functional magnetic resonance imaging (fMRI) of the motor system in patients with tumours in the parietal lobe. Acta Neurochir (Wien) 140(12):1223–1229.Google Scholar
  159. Ogawa S, Lee TM, et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872.PubMedGoogle Scholar
  160. Ogawa S, Lee TM, et al (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78.PubMedGoogle Scholar
  161. Ogawa S, Menon RS, et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812.PubMedGoogle Scholar
  162. Ogawa S, Tank DW, et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955.PubMedGoogle Scholar
  163. Ojemann GA (1991) Cortical organization of language. J Neurosci 11(8):2281–2287.PubMedGoogle Scholar
  164. Ojemann G, Ojemann J, et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326.PubMedGoogle Scholar
  165. Osborn A (2004) Diagnostic Imaging — Brain. Salt Lake City, USA, Amirsys.Google Scholar
  166. Ozdoba C, Nirkko AC, et al (2002) Whole-brain functional magnetic resonance imaging of cerebral arteriovenous malformations involving the motor pathways. Neuroradiology 44(1):1–10.PubMedGoogle Scholar
  167. Palmer ED, Rosen HJ, et al (2001) An event-related fMRI study of overt and covert word stem completion.” Neuroimage 14(1 Pt 1):182–193.PubMedGoogle Scholar
  168. Parkin DM and Muir CS (1992). Cancer Incidence in Five Continents. Comparability and quality of data. IARC Sci Publ(120):45–173.Google Scholar
  169. Parmar H, Sitoh YY and Yeo TT (2004) Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluation of brain tumors involving the motor system. J Comput Assist Tomogr 28(4):551–556.PubMedGoogle Scholar
  170. Penfield W (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443.Google Scholar
  171. Penfield W (1950). The cerebral cortex of man. New York, MacMillan:57 ff.Google Scholar
  172. Petersen SE, Fox PT, et al (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331(6157):585–589.PubMedGoogle Scholar
  173. Petrovich NM, Holodny AI, et al (2004) Isolated translocation of Wernicke’s area to the right hemisphere in a 62-year-man with a temporo-parietal glioma. AJNR Am J Neuroradiol 25(1):130–133.PubMedGoogle Scholar
  174. Pouratian N, Bookheimer SY, et al (2002) Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg 97(1):21–32.PubMedGoogle Scholar
  175. Price, CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197 Pt 3:335–359.PubMedGoogle Scholar
  176. Price CJ, Wise, et al (1996) Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain 119 (Pt 3):919–931.PubMedGoogle Scholar
  177. Priest AN, De Vita E, et al (2006) EPI distortion correction from a simultaneously acquired distortion map using TRAIL. J Magn Reson Imaging 23(4):597–603.PubMedGoogle Scholar
  178. Puce A, Constable RT, et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83(2):262–270.PubMedGoogle Scholar
  179. Pujol J, Conesa G, et al (1996) Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg 84(1):7–13.PubMedGoogle Scholar
  180. Pujol J, Conesa G, et al (1998). Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg 88(5):863–9.PubMedGoogle Scholar
  181. Raichle ME (1983) Positron emission tomography. Annu Rev Neurosci 6:249–267.PubMedGoogle Scholar
  182. Raichle ME, Fiez JA, et al (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4(1):8–26.PubMedGoogle Scholar
  183. Ramsey NF, Sommer IE, et al (2001). Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage 13(4):719–733.PubMedGoogle Scholar
  184. Rausch R, Silfvenious H, et al (1993) Intra-arterial amobarbital procedures. Surgical treatment of the epilepsies. JJ Engel. New York, Raven Press:341–357.Google Scholar
  185. Reinges MH, Krings T, et al (2004) Preoperative mapping of cortical motor function: prospective comparison of functional magnetic resonance imaging and [15O]-H2O-positron emission tomography in the same co-ordinate system. Nucl Med Commun 25(10):987–997.PubMedGoogle Scholar
  186. Reinges MH, T Krings, et al (2005) Prospective demonstration of short-term motor plasticity following acquired central pareses. Neuroimage 24(4):1248–1255.PubMedGoogle Scholar
  187. Roberts TP, (2003). Functional magnetic resonance imaging (fMRI) processing and analysis. ASNR Electronic Learning Center Syllabus: 1–23.Google Scholar
  188. Roessler K, Donat M, et al (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76(8):1152–1157PubMedGoogle Scholar
  189. Roux FE, Boulanouar K, et al (1999) Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol 34(3):225–229.PubMedGoogle Scholar
  190. Roux FE, Boulanouar K, et al (1999) Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir (Wien) 141(1):71–79.Google Scholar
  191. Roux FE, Boulanouar K, et al (2000) Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry 69(4):453–463.PubMedGoogle Scholar
  192. Roux FE, Boulanouar K, et al (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52(6):1335–1345; discussion 1345–1347.PubMedGoogle Scholar
  193. Roux FE, Ibarrola D, et al (2001) Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system. Neurosurgery 49(5):1145–1156; discussion 1156–1157.PubMedGoogle Scholar
  194. Roux FE, Ranjeva JP, et al (1997) Motor functional MRI for presurgical evaluation of cerebral tumors. Stereotact Funct Neurosurg 68(1–4 Pt 1):106–111.PubMedGoogle Scholar
  195. Roux FE and Tremoulet M (2002) Organization of language areas in bilingual patients: a cortical stimulation study. J Neurosurg 97(4):857–864.PubMedGoogle Scholar
  196. Rueckert L, Appollonio I, et al (1994) Magnetic resonance imaging functional activation of left frontal cortex during covert word production. J Neuroimaging 4(2):67–70.PubMedGoogle Scholar
  197. Ruge MI, Victor J, et al (1999) Concordance between functional magnetic resonance imaging and intraoperative language mapping. Stereotact Funct Neurosurg 72(2–4):95–102.PubMedGoogle Scholar
  198. Rutten GJ, Ramsey NF, et al (2002) FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage 17(1):447–460.PubMedGoogle Scholar
  199. Rutten GJ, Ramsey NF, et al (2002) Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation. J Child Neurol 17(4):292–297.PubMedGoogle Scholar
  200. Rutten GJ, Ramsey NF, et al (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51(3):350–360.PubMedGoogle Scholar
  201. Rutten GJ, Ramsey NF, et al (2002) Reproducibility of fMRIdetermined language lateralization in individual subjects. Brain Lang 80(3):421–437.PubMedGoogle Scholar
  202. Rutten GJ, van Rijen PC, et al (1999) Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol 46(3):405–408.PubMedGoogle Scholar
  203. Sakai KL, Hashimoto R and F Homae (2001) Sentence processing in the cerebral cortex. Neurosci Res 39(1):1–10.PubMedGoogle Scholar
  204. Schiffbauer H, Berger MS, et al (2003) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. Neurosurg Focus 15(1):E7.PubMedGoogle Scholar
  205. Schlaggar BL, Brown TT, et al (2002) Functional neuroanatomical differences between adults and school-age children in the processing of single words.” Science 296(5572):1476–1479.PubMedGoogle Scholar
  206. Schlosser, MJ, M Luby, et al (1999). “Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg 91(4):626–35.PubMedGoogle Scholar
  207. Schlosser MJ, McCarthy G, et al (1997) Cerebral vascular malformations adjacent to sensorimotor and visual cortex. Functional magnetic resonance imaging studies before and after therapeutic intervention. Stroke 28(6):1130–1137.PubMedGoogle Scholar
  208. Schreiber A, Hubbe U, et al (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygenlevel-dependent contrast enhancement. AJNR Am J Neuroradiol 21(6):1055–1063.PubMedGoogle Scholar
  209. Schulder M, Maldjian JA, et al (1998) Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg 89(3):412–418.PubMedGoogle Scholar
  210. Schwindack C, Siminotto E, et al (2005) Real-time functional magnetic resonance imaging (rt-fMRI) in patients with brain tumours: preliminary findings using motor and language paradigms. Br J Neurosurg 19(1):25–32.PubMedGoogle Scholar
  211. Shaywitz BA, Shaywitz SE, et al (1995) Sex differences in the functional organization of the brain for language. Nature 373(6515):607–609.PubMedGoogle Scholar
  212. Shinoura N, Yamada R, et al (2005) Preoperative fMRI, tractography and continuous task during awake surgery for maintenance of motor function following surgical resection of metastatic tumor spread to the primary motor area. Minim Invasive Neurosurg 48(2):85–90.PubMedGoogle Scholar
  213. Spreer J, Quiske A, et al (2001) Unsuspected atypical hemispheric dominance for language as determined by fMRI. Epilepsia 42(7):957–959.PubMedGoogle Scholar
  214. Springer JA, Binder JR, et al (1999) Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain 122 (Pt 11):2033–2046.PubMedGoogle Scholar
  215. Stapleton SR, Kiriakopoulos E, et al (1997) Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg 26(2):68–82.PubMedGoogle Scholar
  216. Steger, TR and Jackson EF (2004) Real-time motion detection of functional MRI data. J Appl Clin Med Phys 5(2):64–70.PubMedGoogle Scholar
  217. Stippich, C (2005) Clinical functional magnetic resonance imaging: basic principles and clinical applications. Radiologie up2date 5:317–336Google Scholar
  218. Stippich C, Blatow M, et al (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–1237.PubMedGoogle Scholar
  219. Stippich C, Heiland S, et al (2002) Functional magnetic resonance imaging: Physiological background, technical aspects and prerequisites for clinical use. Rofo 174(1):43–49.PubMedGoogle Scholar
  220. Stippich C, Hofmann R, et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277(1):25–28.PubMedGoogle Scholar
  221. Stippich C, Kapfer D, et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285(2):155–159.PubMedGoogle Scholar
  222. Stippich C, Kress B, et al (2003) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Rofo 175(8):1042–1050.PubMedGoogle Scholar
  223. Stippich C, Mohammed J, et al (2003) Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett 346(1–2):109–113.PubMedGoogle Scholar
  224. Stippich C, Ochmann H and Sartor K (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331(1):50–54.PubMedGoogle Scholar
  225. Stippich C, Rapps, et al (2007). Feasibility of routine preoperative functional magnetic resonance imaging for localizing and lateralizing language in 81 consecutive patients with brain tumors. Radiology in press.Google Scholar
  226. Stippich C, Romanowski A, et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364(2): 90–93PubMedGoogle Scholar
  227. Stippich C, Romanowski A, et al (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381(3):264–268.PubMedGoogle Scholar
  228. Szaflarski JP, Binder JR, et al (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59(2):238–244.PubMedGoogle Scholar
  229. Ternovoi SK, Sinitsyn VE, et al (2004) Localization of the motor and speech zones of the cerebral cortex by functional magnetic resonance tomography. Neurosci Behav Physiol 34(5):431–437.PubMedGoogle Scholar
  230. Thulborn K (2006) Clinical functional Magnetic Resonance Imaging. Current Protocols in Magnetic Resonance Imaging. EM Haacke, John Wiley & Sons, Inc.Google Scholar
  231. Thulborn KR and Shen GX (1999) An integrated head immobilization system and high-performance RF coil for fMRI of visual paradigms at 1.5 T. J Magn Reson 139(1):26–34.PubMedGoogle Scholar
  232. Towle VL, Khorasani L, et al (2003) Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping. Neuroimage 19(3):684–697.PubMedGoogle Scholar
  233. Ulmer JL, Krouwer HG, et al (2003) Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am J Neuroradiol 24(2):213–217.PubMedGoogle Scholar
  234. Ulmer JL, Salvan CV, et al (2004) The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat 3(6):567–576.PubMedGoogle Scholar
  235. van der Kallen BF, Morris GL, et al (1998) Hemispheric language dominance studied with functional MR: preliminary study in healthy volunteers and patients with epilepsy. AJNR Am J Neuroradiol 19(1):73–77.PubMedGoogle Scholar
  236. Van Westen D, Skagerberg G, et al (2005) Functional magnetic resonance imaging at 3T as a clinical tool in patients with intracranial tumors. Acta Radiol 46(6):599–609.PubMedGoogle Scholar
  237. Wada J and Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Experimental and clinical observations. J Neurosurg 17:266–282.Google Scholar
  238. Warburton E, Wise RJ, et al (1996) Noun and verb retrieval by normal subjects. Studies with PET. Brain 119 (Pt 1):159–179.Google Scholar
  239. Weiskopf N, Klose U, et al (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24(4):1068–1079.PubMedGoogle Scholar
  240. Weiskopf N, Scharnowski F, et al (2004) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 98(4–6):357–373.PubMedGoogle Scholar
  241. Weiskopf N, Veit R, et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586.PubMedGoogle Scholar
  242. Westerveld K, Stoddard K and McCarthy K (1999) Case report of false lateralization using fMRI: comparison of language localization, Wada testing, and cortical stimulation. Arch Clin Neuropsychol 14:162–163.Google Scholar
  243. Wienbruch C, Candia V, et al (2006) A portable and low-cost fMRI compatible pneumatic system for the investigation of the somatosensensory system in clinical and research environments. Neurosci Lett 398(3):183–188.PubMedGoogle Scholar
  244. Wirtz CR, Tronnier VM, et al (1997) Image-guided neurosurgery with intraoperative MRI: update of frameless stereotaxy and radicality control. Stereotact Funct Neurosurg 68(1–4 Pt 1):39–43.PubMedGoogle Scholar
  245. Wise R, Chollet F, et al (1991) Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114 (Pt 4):1803–1817.PubMedGoogle Scholar
  246. Wittek A, Kikinis R, et al (2005) Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 8 (Pt 2):583–590.PubMedGoogle Scholar
  247. Woolsey CN, Erickson TC and Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51(4):476–506.PubMedGoogle Scholar
  248. Worthington C, Vincent DJ, et al (1997) Comparison of functional magnetic resonance imaging for language localization and intracarotid speech amytal testing in presurgical evaluation for intractable epilepsy. Preliminary results. Stereotact Funct Neurosurg 69(1–4 Pt 2):197–201.Google Scholar
  249. Wunderlich G, Knorr U, et al (1998) Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery 42(1):18–26; discussion 26–27.PubMedGoogle Scholar
  250. Yetkin FZ, Mueller WM, et al (1997) Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol 18(7):1311–1315.PubMedGoogle Scholar
  251. Yetkin FZ, Swanson S, et al (1998) Functional MR of frontal lobe activation: comparison with Wada language results. AJNR Am J Neuroradiol 19(6):1095–1098.PubMedGoogle Scholar
  252. Yousry I, Naidich TP and Yousry TA (2001) Functional magnetic resonance imaging: factors modulating the cortical activation pattern of the motor system. Neuroimaging Clin N Am 11(2):195–202, viii.PubMedGoogle Scholar
  253. Yousry TA, Schmid UD, et al (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195(1):23–29.PubMedGoogle Scholar
  254. Yousry TA, Schmid UD, et al (1996) The central sulcal vein: a landmark for identifi cation of the central sulcus using functional magnetic resonance imaging. J Neurosurg 85(4):608–617.PubMedGoogle Scholar
  255. Yousry TA, Schmid UD, et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120 (Pt 1): 141–57.Google Scholar
  256. Zentner J, Hufnagel A, et al (1996) Functional results after resective procedures involving the supplementary motor area. J Neurosurg 85(4):542–549.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christoph Stippich
    • 1
  • Maria Blatow
    • 1
  • Karsten Krakow
    • 2
  1. 1.Division of Neuroradiology, Department of NeurologyUniversity of Heidelberg Medical CenterHeidelbergGermany
  2. 2.Department of Neurology, Brain Imaging CenterUniversity of FrankfurtFrankfurtGermany

Personalised recommendations