Skip to main content

Localization of Brain Activity using Functional Magnetic Resonance Imaging

  • Chapter
Clinical Functional MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Magnetic resonance imaging (MRI) is based on magnetic excitation of body tissue and the reception of returned electromagnetic signals from the body. Excitation induces phase-locked precession of protons with a frequency proportional to the strength of the surrounding magnetic field as described by the Larmor equation. This fact can be exploited for spatial encoding by applying magnetic field gradients along spatial dimensions on top of the strong static magnetic field of the scanner. The obtained frequency-encoded information for each slice is accumulated in two-dimensional κ space which can be transformed into image space by Fourier analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7:254–266

    Article  PubMed  CAS  Google Scholar 

  • Bandettini PA, Birn RM, Donahue KM (2000) Functional MRI: background, methodology, limits, and implementation. In: JT Cacioppo, LG Tassinary, GG Berntson (eds) Handbook of psychophysiology. Cambridge University Press, New York, pp 978–1014

    Google Scholar 

  • Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Blamire AM, Ogawa S, Ugurbil K et al. (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89:11096–11073

    Article  Google Scholar 

  • Bledowski C, Cohen Kadosh K, Wibral M, Rahm B, Bittner RA, Hoechstetter K, Scherg M, Maurer K, Goebel R, Linden DE (2006) Mental chronometry of working memory retrieval: a combined functional magnetic resonance imaging and event-related potentials approach. J Neurosci 26:821–829

    Article  PubMed  CAS  Google Scholar 

  • Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    PubMed  CAS  Google Scholar 

  • Brown MA, Semelka RC (1999) MRI — basic principles and applications. New York, Wiley-Liss

    Google Scholar 

  • Büchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283:1538–1541

    Article  PubMed  Google Scholar 

  • Buckner RL, Bandettini PA, O’Craven KM, Savoy RL, Petersen SE, Raichle ME, Rosen BR (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci USA 93:14878–14883

    Article  PubMed  CAS  Google Scholar 

  • Bullmore E, Brammer M, Williams SC et al. (1996) Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35:261–277

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygen metabolism during brain activation: The balloon model. Magn Reson Med 39:855–864

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  PubMed  Google Scholar 

  • Carman GJ, Drury HA, Van Essen D (1995) Computational methods for reconstructing and unfolding the cerebral cortex. Cereb Cortex 5:506–517

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco M, Formisano E, Backes W, Zanella F, Neuenschwander S, Singer W, Goebel R (2002) Activity patterns in human motion-sensitive areas depend on the interpretation of global motion. Proc Natl Acad Sci USA 99:13914–13919

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Waggoner AK, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374

    Article  PubMed  CAS  Google Scholar 

  • Cochrane D, Orcutt GH (1949) Application of least squares regression to relationships containing autocorrelated error terms. J Am Stat Assoc 44:32–61

    Article  Google Scholar 

  • Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340

    Article  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208

    Article  PubMed  CAS  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edition. John Wiley & Sons, New York

    Google Scholar 

  • Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579

    Article  PubMed  CAS  Google Scholar 

  • Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2003) Real-time independent component analysis of fMRI time-series. Neuroimage 20:2209–2224

    Article  PubMed  Google Scholar 

  • Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005) Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25:193–205

    Article  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  PubMed  CAS  Google Scholar 

  • Formisano E, Goebel R (2003) Tracking cognitive processes with functional MRI mental chronometry. Current Opinion in Neurobiology 13:174–181

    Article  PubMed  CAS  Google Scholar 

  • Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002) Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49:241–254

    Article  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxi-dative glucose consumption during focal physiological neural activity. Science 241:462–464

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Jezzard P, Turner R (1994) The analysis of functional MRI time-series. Hum Brain Mapp 1:153–171

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16:465–483

    Article  PubMed  CAS  Google Scholar 

  • Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346

    Article  PubMed  CAS  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  • Goebel R, Singer W (1999) Cortical surface-based statistical analysis of functional magnetic resonance imaging data. Neuroimage, Supplement

    Google Scholar 

  • Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21:1251–1261

    Article  PubMed  Google Scholar 

  • Goebel R, Hasson U, Lefi I, Malach R (2004) Statistical analyses across aligned cortical hemispheres reveal high-resolution population maps of human visual cortex. Neuroimage 22, Supplement 2

    Google Scholar 

  • Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27:392–401

    Article  PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging. Sinauer Associates, Sunderland, MA USA

    Google Scholar 

  • Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169

    Article  PubMed  CAS  Google Scholar 

  • Kirby KN (1993) Advanced data analysis with SYSTAT. Van Nostrand Reinhold, New York

    Google Scholar 

  • Kriegeskorte N, Goebel R (2001) An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14:329–346

    Article  PubMed  CAS  Google Scholar 

  • Kriegeskorte N, Goebel R, Bandettini P (2006) Informationbased functional brain mapping. Proc Natl Acad Sci USA 103:3863–3868

    Article  PubMed  CAS  Google Scholar 

  • Kruggel F, von Cramon DY (1999) Temporal properties of the hemodynamic response in functional MRI. Hum Brain Mapp 8:259–271

    Article  PubMed  CAS  Google Scholar 

  • Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models, 5th edn. McGraw-Hill, Boston

    Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Wandell B (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Caesar K, Lauritzen M (2000) Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 523:235–246

    Article  PubMed  CAS  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22

    Article  Google Scholar 

  • McKeown M, Makeig S, Brown S, Jung TP, Kindermann S, Bell A, Iragui V, Sejnowski T (1998) Blind separation of functional magnetic resonance imaging (fMRI) data. Hum Brain Mapp 6:368–372

    Article  PubMed  CAS  Google Scholar 

  • Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216

    Article  PubMed  Google Scholar 

  • Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    Article  PubMed  Google Scholar 

  • NessAiver M (1997) All you really need to know about MRI physics. Simply Physics, Baltimore

    Google Scholar 

  • O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–1023

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22:1157–1172

    Article  PubMed  CAS  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  • Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ (2000) Positron emission tomography in the study of emotion, anxiety, and anxiety disorders. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology. Oxford University Press, New York, pp 389–406

    Google Scholar 

  • Robson MD, Dorosz JL, Gore JC (1998) Measurements of the temporal fMRI response of the human auditory cortex to trains of tones. Neuroimage 7:185–198

    Article  PubMed  CAS  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25:230–242

    Article  PubMed  Google Scholar 

  • Scherg M, Linden DEJ, Muckli L, Roth R, Drüen K, Ille N, Zanella FE, Singer W, Goebel R (1999) Combining MEG with fMRI in studies of the human visual system. In: Yoshimoto T, Kotani M; Karibe H, Nakasato N (eds) Recent advances in biomagnetism. Tohoku University Press, Sendai

    Google Scholar 

  • Schild HH (1990) MRI made easy. Schering AG, Berlin

    Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  PubMed  CAS  Google Scholar 

  • Talairach G, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43:271–282

    Article  PubMed  Google Scholar 

  • Van de Ven VG, Formisano E, Roder CH, Prvulovic D, Bittner RA, Dietz MG, Hubl D, Dierks T, Federspiel A, Esposito F, Di Salle F, Jansma B, Goebel R, Linden DE (2005) The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. Neuroimage 27:644–655

    Article  PubMed  Google Scholar 

  • Wager TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309

    Article  PubMed  Google Scholar 

  • Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19:577–586

    Article  PubMed  Google Scholar 

  • Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 32:493–504

    Article  Google Scholar 

  • Worsley KJ, Marrett S, Neelin P, Evans AC (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goebel, R. (2007). Localization of Brain Activity using Functional Magnetic Resonance Imaging. In: Stippich, C. (eds) Clinical Functional MRI. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49976-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49976-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24469-1

  • Online ISBN: 978-3-540-49976-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics