Localization of Brain Activity using Functional Magnetic Resonance Imaging

  • Rainer Goebel
Part of the Medical Radiology book series (MEDRAD)


Magnetic resonance imaging (MRI) is based on magnetic excitation of body tissue and the reception of returned electromagnetic signals from the body. Excitation induces phase-locked precession of protons with a frequency proportional to the strength of the surrounding magnetic field as described by the Larmor equation. This fact can be exploited for spatial encoding by applying magnetic field gradients along spatial dimensions on top of the strong static magnetic field of the scanner. The obtained frequency-encoded information for each slice is accumulated in two-dimensional κ space which can be transformed into image space by Fourier analysis.


fMRI Data Echo Planar Imaging Anterior Commissure Magnetic Resonance Image Signal Radio Frequency Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Hum Brain Mapp 7:254–266PubMedCrossRefGoogle Scholar
  2. Bandettini PA, Birn RM, Donahue KM (2000) Functional MRI: background, methodology, limits, and implementation. In: JT Cacioppo, LG Tassinary, GG Berntson (eds) Handbook of psychophysiology. Cambridge University Press, New York, pp 978–1014Google Scholar
  3. Bandettini PA, Cox RW (2000) Event-related fMRI contrast when using constant interstimulus interval: theory and experiment. Magn Reson Med 43:540–548PubMedCrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  5. Blamire AM, Ogawa S, Ugurbil K et al. (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89:11096–11073CrossRefGoogle Scholar
  6. Bledowski C, Cohen Kadosh K, Wibral M, Rahm B, Bittner RA, Hoechstetter K, Scherg M, Maurer K, Goebel R, Linden DE (2006) Mental chronometry of working memory retrieval: a combined functional magnetic resonance imaging and event-related potentials approach. J Neurosci 26:821–829PubMedCrossRefGoogle Scholar
  7. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedGoogle Scholar
  8. Brown MA, Semelka RC (1999) MRI — basic principles and applications. New York, Wiley-LissGoogle Scholar
  9. Büchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283:1538–1541PubMedCrossRefGoogle Scholar
  10. Buckner RL, Bandettini PA, O’Craven KM, Savoy RL, Petersen SE, Raichle ME, Rosen BR (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci USA 93:14878–14883PubMedCrossRefGoogle Scholar
  11. Bullmore E, Brammer M, Williams SC et al. (1996) Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35:261–277PubMedCrossRefGoogle Scholar
  12. Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygen metabolism during brain activation: The balloon model. Magn Reson Med 39:855–864PubMedCrossRefGoogle Scholar
  13. Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233PubMedCrossRefGoogle Scholar
  14. Carman GJ, Drury HA, Van Essen D (1995) Computational methods for reconstructing and unfolding the cerebral cortex. Cereb Cortex 5:506–517PubMedCrossRefGoogle Scholar
  15. Castelo-Branco M, Formisano E, Backes W, Zanella F, Neuenschwander S, Singer W, Goebel R (2002) Activity patterns in human motion-sensitive areas depend on the interpretation of global motion. Proc Natl Acad Sci USA 99:13914–13919PubMedCrossRefGoogle Scholar
  16. Cheng K, Waggoner AK, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374PubMedCrossRefGoogle Scholar
  17. Cochrane D, Orcutt GH (1949) Application of least squares regression to relationships containing autocorrelated error terms. J Am Stat Assoc 44:32–61CrossRefGoogle Scholar
  18. Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340CrossRefGoogle Scholar
  19. Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208PubMedCrossRefGoogle Scholar
  20. Draper NR, Smith H (1998) Applied regression analysis, 3rd edition. John Wiley & Sons, New YorkGoogle Scholar
  21. Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579PubMedCrossRefGoogle Scholar
  22. Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2003) Real-time independent component analysis of fMRI time-series. Neuroimage 20:2209–2224PubMedCrossRefGoogle Scholar
  23. Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005) Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25:193–205PubMedCrossRefGoogle Scholar
  24. Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution inter-subject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284PubMedCrossRefGoogle Scholar
  25. Formisano E, Goebel R (2003) Tracking cognitive processes with functional MRI mental chronometry. Current Opinion in Neurobiology 13:174–181PubMedCrossRefGoogle Scholar
  26. Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002) Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49:241–254CrossRefGoogle Scholar
  27. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869PubMedCrossRefGoogle Scholar
  28. Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxi-dative glucose consumption during focal physiological neural activity. Science 241:462–464PubMedCrossRefGoogle Scholar
  29. Friston KJ, Jezzard P, Turner R (1994) The analysis of functional MRI time-series. Hum Brain Mapp 1:153–171CrossRefGoogle Scholar
  30. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRefGoogle Scholar
  31. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40PubMedCrossRefGoogle Scholar
  32. Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16:465–483PubMedCrossRefGoogle Scholar
  33. Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346PubMedCrossRefGoogle Scholar
  34. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878PubMedCrossRefGoogle Scholar
  35. Goebel R, Singer W (1999) Cortical surface-based statistical analysis of functional magnetic resonance imaging data. Neuroimage, SupplementGoogle Scholar
  36. Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21:1251–1261PubMedCrossRefGoogle Scholar
  37. Goebel R, Hasson U, Lefi I, Malach R (2004) Statistical analyses across aligned cortical hemispheres reveal high-resolution population maps of human visual cortex. Neuroimage 22, Supplement 2Google Scholar
  38. Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27:392–401PubMedCrossRefGoogle Scholar
  39. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430PubMedCrossRefGoogle Scholar
  40. Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging. Sinauer Associates, Sunderland, MA USAGoogle Scholar
  41. Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169PubMedCrossRefGoogle Scholar
  42. Kirby KN (1993) Advanced data analysis with SYSTAT. Van Nostrand Reinhold, New YorkGoogle Scholar
  43. Kriegeskorte N, Goebel R (2001) An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. Neuroimage 14:329–346PubMedCrossRefGoogle Scholar
  44. Kriegeskorte N, Goebel R, Bandettini P (2006) Informationbased functional brain mapping. Proc Natl Acad Sci USA 103:3863–3868PubMedCrossRefGoogle Scholar
  45. Kruggel F, von Cramon DY (1999) Temporal properties of the hemodynamic response in functional MRI. Hum Brain Mapp 8:259–271PubMedCrossRefGoogle Scholar
  46. Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models, 5th edn. McGraw-Hill, BostonGoogle Scholar
  47. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  48. Logothetis NK, Wandell B (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769PubMedCrossRefGoogle Scholar
  49. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497PubMedCrossRefGoogle Scholar
  50. Mathiesen C, Caesar K, Lauritzen M (2000) Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 523:235–246PubMedCrossRefGoogle Scholar
  51. McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22CrossRefGoogle Scholar
  52. McKeown M, Makeig S, Brown S, Jung TP, Kindermann S, Bell A, Iragui V, Sejnowski T (1998) Blind separation of functional magnetic resonance imaging (fMRI) data. Hum Brain Mapp 6:368–372PubMedCrossRefGoogle Scholar
  53. Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216PubMedCrossRefGoogle Scholar
  54. Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94PubMedCrossRefGoogle Scholar
  55. NessAiver M (1997) All you really need to know about MRI physics. Simply Physics, BaltimoreGoogle Scholar
  56. O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–1023PubMedCrossRefGoogle Scholar
  57. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  58. Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22:1157–1172PubMedCrossRefGoogle Scholar
  59. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRefGoogle Scholar
  60. Reiman EM, Lane RD, Ahern GL, Schwartz GE, Davidson RJ (2000) Positron emission tomography in the study of emotion, anxiety, and anxiety disorders. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology. Oxford University Press, New York, pp 389–406Google Scholar
  61. Robson MD, Dorosz JL, Gore JC (1998) Measurements of the temporal fMRI response of the human auditory cortex to trains of tones. Neuroimage 7:185–198PubMedCrossRefGoogle Scholar
  62. Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25:230–242PubMedCrossRefGoogle Scholar
  63. Scherg M, Linden DEJ, Muckli L, Roth R, Drüen K, Ille N, Zanella FE, Singer W, Goebel R (1999) Combining MEG with fMRI in studies of the human visual system. In: Yoshimoto T, Kotani M; Karibe H, Nakasato N (eds) Recent advances in biomagnetism. Tohoku University Press, SendaiGoogle Scholar
  64. Schild HH (1990) MRI made easy. Schering AG, BerlinGoogle Scholar
  65. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRefGoogle Scholar
  66. Talairach G, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  67. Van Atteveldt N, Formisano E, Goebel R, Blomert L (2004) Integration of letters and speech sounds in the human brain. Neuron 43:271–282PubMedCrossRefGoogle Scholar
  68. Van de Ven VG, Formisano E, Roder CH, Prvulovic D, Bittner RA, Dietz MG, Hubl D, Dierks T, Federspiel A, Esposito F, Di Salle F, Jansma B, Goebel R, Linden DE (2005) The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. Neuroimage 27:644–655PubMedCrossRefGoogle Scholar
  69. Wager TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309PubMedCrossRefGoogle Scholar
  70. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19:577–586PubMedCrossRefGoogle Scholar
  71. Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 32:493–504CrossRefGoogle Scholar
  72. Worsley KJ, Marrett S, Neelin P, Evans AC (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rainer Goebel
    • 1
  1. 1.Department of Cognitive NeuroscienceMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations