Advertisement

Clinical BOLD fMRI: Artifacts, Tips and Tricks

  • Ronald Peeters
  • Stefan Sunaert
Part of the Medical Radiology book series (MEDRAD)

Abstract

BOLD-fMRI is prone to different artifacts and sources of error. These artifacts can have a technical origin, like susceptibility artifacts in specific brain regions, but they can also be related to brain physiology such as activation in draining veins that may occur in the vicinity of functionally active regions or flow artifacts. There are also several specific effects related to pathology that can effect clinical fMRI and therefore can lead to medical misinterpretation, e.g. alterations or absence of BOLD-signals induced by various brain lesions. The same holds true for pharmacological effects on BOLD-imaging in patients receiving medication. Reduced cooperation of the patients during scanning or marked head motion are practical problems in clinical neuroimaging and especially in fMRI. Therefore the success of clinical fMRI depends considerably on the clinician’s/technician’s ability to recognize and cope with these technical, physiological and patient induced artifacts and sources of error.

Keywords

Functional Magnetic Resonance Imaging Blood Oxygenation Level Dependent Magn Reson Image Blood Oxygenation Level Dependent Signal Signal Intensity Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abduljalil AM, Robitaille PM (1999) Macroscopic susceptibility in ultra high field MRI. J Comput Assist Tomogr 23:832–841PubMedGoogle Scholar
  2. Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. Neuroimage 8:360–369PubMedGoogle Scholar
  3. Baudendistel KT, Reichenbach JR, Metzner R, Schroeder J, Schad LR (1998) Comparison of functional MR-venography and EPI-BOLD fMRI at 1.5 T. Magn Reson Imaging 16:989–991PubMedGoogle Scholar
  4. Biswal BB, Hyde JS (1997) Contour-based registration technique to differentiate between task-activated and head motion-induced signal variations in fMRI. Magn Reson Med 38:470–476PubMedGoogle Scholar
  5. Biswal B, DeYoe AE, Hyde JS (1996) Reduction of physiological fluctuations in fMRI using digital filters. Magn Reson Med 35:107–113PubMedGoogle Scholar
  6. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to Fmri signal change — Monte-Carlo modeling and diffusion-weighted studies n-vivo. Magn Reson Med 34:4–10PubMedGoogle Scholar
  7. Braus DF, Brassen S (2005) Functional magnetic resonance imaging and antipsychotics. Overview and own data. Radiologe 45:178–185PubMedGoogle Scholar
  8. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611PubMedGoogle Scholar
  9. Bryan RN, Kraut M (1998) Functional magnetic resonance imaging: you get what you (barely) see. Am J Neuroradiol 19:991–992PubMedGoogle Scholar
  10. Bryant CA, Jackson SH (1998) Functional imaging of the brain in the evaluation of drug response and its application to the study of aging. Drugs Aging 13:211–222PubMedGoogle Scholar
  11. Cohen ER, Rostrup E, Sidaros K, Lund TE, Paulson OB, Ugurbil K, Kim SG (2004) Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. Neuroimage 23:613–624PubMedGoogle Scholar
  12. Cohen MS, DuBois RM (1999) Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging 10:33–40PubMedGoogle Scholar
  13. Dagli MS, Ingeholm JE, Haxby JV (1999) Localization of cardiac-induced signal change in fMRI. Neuroimage 9:407–415PubMedGoogle Scholar
  14. de Zwart JA, van Gelderen P, Kellman P, Duyn JH (2002) Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48:1011–1020PubMedGoogle Scholar
  15. Debus J, Essig M, Schad LR, Wenz F, Baudendistel K, Knopp MV, Engenhart R, Lorenz WJ (1996) Functional magnetic resonance imaging in a stereotactic setup. Magn Reson Imaging 14:1007–1012PubMedGoogle Scholar
  16. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441PubMedGoogle Scholar
  17. Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Matthews PM, Tyler LK (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11:589–600PubMedGoogle Scholar
  18. Duerk JL, Simonetti OP (1991) Theoretical aspects of motion sensitivity and compensation in echo-planar imaging. JMRI-J Magn Reson Imaging 1:643–650Google Scholar
  19. Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Kim SG (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027PubMedGoogle Scholar
  20. Duong TQ, Yacoub E, Adriany G, Hu XP, Andersen P, Vaughan JT, Ugurbil K, Kim SG (2004) Spatial specificity of high-resolution, spin-echo BOLD, and CBF fMRI at 7 T. Magn Reson Med 51:646–647Google Scholar
  21. Duyn JH, Moonen CTW, Vanyperen GH, Deboer RW, Luyten PR (1994) Inflow versus deoxyhemoglobin effects in bold functional MRI using gradient echoes at 1.5 T. NMR Biomed 7:83–88PubMedGoogle Scholar
  22. Dymarkowski S, Sunaert S, Van Oostende S, Van Hecke P, Wilms G, Demaerel P, Nuttin B, Plets C, Marchal G (1998) Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol 8:1573–1580PubMedGoogle Scholar
  23. Edward V, Windischberger C, Cunnington R, Erdler M, Lanzenberger R, Mayer D, Endl W, Beisteiner R (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Mapp 11:207–213PubMedGoogle Scholar
  24. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex 7:181–192PubMedGoogle Scholar
  25. Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91:238–250PubMedGoogle Scholar
  26. Fitzsimmons JR, Scott JD, Peterson DM, Wolverton BL, Webster CS, Lang PJ (1997) Integrated RF coil with stabilization for fMRI human cortex. Magn Reson Med 38:15–18PubMedGoogle Scholar
  27. Frahm J, Merboldt KD, Hanicke W, Kleinschmidt A, Boecker H (1994) Brain or vein-oxygenation or flow — on signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53PubMedGoogle Scholar
  28. Freire L, Mangin JF (2001) Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage 14:709–722PubMedGoogle Scholar
  29. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53PubMedGoogle Scholar
  30. Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996a) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235PubMedGoogle Scholar
  31. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996b) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355PubMedGoogle Scholar
  32. Fujiwara N, Sakatani K, Katayama Y, Murata Y, Hoshino T, Fukaya C, Yamamoto T (2004) Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. Neuroimage 21:1464–1471PubMedGoogle Scholar
  33. Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, Romstock J, Vieth J (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91:73–79PubMedGoogle Scholar
  34. Gao JH, Miller I, Lai S, Xiong J, Fox PT (1996) Quantitative assessment of blood inflow effects in functional MRI signals. Magn Reson Med 36:314–319PubMedGoogle Scholar
  35. Gasser TG, Sandalcioglu EI, Wiedemayer H, Hans V, Gizewski E, Forsting M, Stolke D (2004) A novel passive functional MRI paradigm for preoperative identification of the somatosensory cortex. Neurosurg Rev 27:106–112PubMedGoogle Scholar
  36. Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302PubMedGoogle Scholar
  37. Gollub RL, Breiter HC, Kantor H, Kennedy D, Gastfriend D, Mathew RT, Makris N, Guimaraes A, Riorden J, Campbell T, Foley M, Hyman SE, Rosen B, Weisskoff R (1998) Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J Cereb Blood Flow Metab 18:724–734PubMedGoogle Scholar
  38. Haacke EM, Hopkins A, Lai S, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R, Klein S, Thompson L, Detterman D, Tkach J, Lewin JS (1994) 2D and 3D high resolution gradient-echo functional imaging of the brain — venous contributions to signal in motor cortex studies. NMR Biomed 7:54–62PubMedGoogle Scholar
  39. Haberg A, Kvistad KA, Unsgard G, Haraldseth O (2004a) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54:902–914PubMedGoogle Scholar
  40. Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291PubMedGoogle Scholar
  41. Hall DA, Goncalves MS, Smith S, Jezzard P, Haggard MP, Kornak J (2002) A method for determining venous contribution to BOLD contrast sensory activation. Magn Reson Imaging 20:695–706PubMedGoogle Scholar
  42. Hill DLG, Smith ADC, Simmons A, Maurer CR, Cox TCS, Elwes R, Brammer M, Hawkes DJ, Polkey CE (2000) Sources of error in comparing functional magnetic resonance imaging and invasive electrophysiological recordings. J Neurosurg 93:214–223PubMedGoogle Scholar
  43. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21:1415–1422PubMedGoogle Scholar
  44. Hoogenraad FG, Pouwels PJ, Hofman MB, Rombouts SA, Lavini C, Leach MO, Haacke EM (2000) High-resolution segmented EPI in a motor task fMRI study. Magn Reson Imaging 18:405–409PubMedGoogle Scholar
  45. Hund-Georgiadis M, Mildner T, Georgiadis D, Weih K, von Cramon DY (2003) Impaired hemodynamics and neural activation? A fMRI study of major cerebral artery stenosis. Neurology 61:1276–1279PubMedGoogle Scholar
  46. Jacobsen LK, Gore JC, Skudlarski P, Lacadie CM, Jatlow P, Krystal JH (2002) Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn Reson Imaging 20:141–145PubMedGoogle Scholar
  47. Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55:850–858PubMedGoogle Scholar
  48. Jiang AP, Kennedy DN, Baker JR, Weisskoff RM, Tootell RBH, Woods RP, Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW (1995) Motion detection and correction in functional MR imaging. Hum Brain Mapping 3:224–235Google Scholar
  49. Kansaku K, Kitazawa S, Kawano K (1998) Sequential hemodynamic activation of motor areas and the draining veins during finger movements revealed by cross-correlation between signals from fMRI. Neuroreport 9:1969–1974PubMedGoogle Scholar
  50. Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME (1998) Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. Stroke 29:2641–2645PubMedGoogle Scholar
  51. Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169PubMedGoogle Scholar
  52. Krings T, Reinges MH, Erberich S, Kemeny S, Rohde V, Spetzger U, Korinth M, Willmes K, Gilsbach JM, Thron A (2001a) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70:pp 749–760.PubMedGoogle Scholar
  53. Krings T, Schreckenberger M, Rohde V, Foltys H, Spetzger U, Sabri O, Reinges MH, Kemeny S, Meyer PT, Moller-Hartmann W, Korinth M, Gilsbach JM, Buell U, Thron A (2001b) Metabolic and electrophysiological validation of functional MRI. J Neurol Neurosurg Psychiatry 71:762–771PubMedGoogle Scholar
  54. Kumari V, Gray JA, ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E, Vythelingum GN, Williams SC, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19:1002–1013PubMedGoogle Scholar
  55. Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen YF, Moody DM (2002) Dietary caffeine consumption modulates fMRI measures. Neuroimage 17:751–757PubMedGoogle Scholar
  56. Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen YF, Moody DM (2003) Relationship between caffeine-induced changes in resting cerebral perfusion and blood oxygenation level-dependent signal. AJNR Am J Neuroradiol 24:1607–1611PubMedGoogle Scholar
  57. Le Rumeur E, Allard M, Poiseau E, Jannin P (2000) Role of the mode of sensory stimulation in presurgical brain mapping in which functional magnetic resonance imaging is used. JNeurosurg 93:427–431Google Scholar
  58. Lee AT, Glover GH, Meyer CH (1995) Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magn Reson Med 33:745–754PubMedGoogle Scholar
  59. Lee CC, Ward HA, Sharbrough FW, Meyer FB, Marsh WR, Raffel C, So EL, Cascino GD, Shin CS, Xu YC, Riederer SJ, Jack CR (1999) Assessment of functional MR imaging in neurosurgical planning. Am J Neuroradiol 20:1511–1519PubMedGoogle Scholar
  60. Lee JH, Telang FW, Springer CS Jr, Volkow ND (2003) Abnormal brain activation to visual stimulation in cocaine abusers. Life Sci 73:1953–1961PubMedGoogle Scholar
  61. Lehericy S, Biondi A, Sourour N, Vlaicu M, du Montcel ST, Cohen L, Vivas E, Capelle L, Faillot T, Casasco A, Le BD, Marsault C (2002) Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology 223:672–682PubMedGoogle Scholar
  62. Levin JM, Ross MH, Mendelson JH, Kaufman MJ, Lange N, Maas LC, Mello NK, Cohen BM, Renshaw PF (1998) Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Res-Neuroimaging 82:135–146Google Scholar
  63. Levy LM, Henkin RI, Lin CS, Hutter A, Schellinger D (1998) Increased brain activation in response to odors in patients with hyposmia after theophylline treatment demonstrated by fMRI. J Comput Assist Tomogr 22:760–770PubMedGoogle Scholar
  64. Li SJ, Biswal B, Li Z, Risinger R, Rainey C, Cho JK, Salmeron BJ, Stein EA (2000) Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med 43:45–51PubMedGoogle Scholar
  65. Logothetis N (2000) Can current fMRI techniques reveal the micro-architecture of cortex? Nat Neurosci 3:413–414PubMedGoogle Scholar
  66. Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357:1003–1037PubMedGoogle Scholar
  67. Lowe MJ, Lurito JT, Mathews VP, Phillips MD, Hutchins GD (2000) Quantitative comparison of functional contrast from BOLD-weighted spin-echo and gradient-echo echo-planar imaging at 1.5 Tesla and H2 15O PET in the whole brain. J Cereb Blood Flow Metab 20:1331–1340PubMedGoogle Scholar
  68. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198PubMedGoogle Scholar
  69. Maldjian J, Atlas SW, Howard RS, Greenstein E, Alsop D, Detre JA, Listerud J, D’Esposito M, Flamm ES (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 84:477–483PubMedGoogle Scholar
  70. Mandeville JB, Jenkins BG, Kosofsky BE, Moskowitz MA, Rosen BR, Marota JJA (2001) Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 45:443–447PubMedGoogle Scholar
  71. Menon RS (2002) Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magn Reson Med 47:1–9PubMedGoogle Scholar
  72. Menon RS, Kim SG (1999) Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn Sci 3:207–216PubMedGoogle Scholar
  73. Menon RS, Ogawa S, Ugurbil K (1995) High-temporal-resolution studies of the human primary visual-cortex at 4 T — teasing out the oxygenation contribution in FMRI. Intl J Imaging Systems Technol 6:209–215Google Scholar
  74. Menon RS, Thomas CG, Gati JS (1997) Investigation of BOLD contrast in fMRI using multi-shot EPI. NMR Biomed 10:179–182PubMedGoogle Scholar
  75. Menon RS, Gati JS, Goodyear BG, Luknowsky DC, Thomas CG (1998) Spatial and temporal resolution of functional magnetic resonance imaging. Biochem Cell Biol 76:560–571PubMedGoogle Scholar
  76. Morton DW, Maravilla KR, Meno JR, Winn HR (2002) Systemic theophylline augments the blood oxygen leveldependent response to forepaw stimulation in rats. AJNR Am J Neuroradiol 23:588–593PubMedGoogle Scholar
  77. Muresan L, Renken R, Roerdink JBTM, Duifhuis H (2005) Automated correction of spin-history related motion artefacts in fMRI: Simulated and phantom data. IEEE Trans Biomed Eng 52:1450–1460PubMedGoogle Scholar
  78. Nitschke MF, Melchert UH, Hahn C, Otto V, Arnold H, Herrmann HD, Nowak G, Westphal M, Wessel K (1998) Preoperative functional magnetic resonance imaging (fMRI) of the motor system in patients with tumours in the parietal lobe. Acta Neurochir (Wien) 140:1223–1229Google Scholar
  79. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, Renner B, Ahne G (2000) Sensory-specific satietyrelated olfactory activation of the human orbitofrontal cortex. Neuroreport 11:893–897PubMedGoogle Scholar
  80. Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18PubMedGoogle Scholar
  81. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magneticresonance-imaging — a comparison of signal characteristics with a biophysical model. Biophys J 64:803–812PubMedGoogle Scholar
  82. Oja JM, Gillen J, Kauppinen RA, Kraut M, Van Zijl PC (1999) Venous blood effects in spin-echo fMRI of human brain. Magn Reson Med 42:617–626PubMedGoogle Scholar
  83. Orchard J, Atkins MS (2003) Iterating registration and activation detection to overcom activation bias in fMRI motion estimates. In. Ellis R, Peters T, eds.: Medical Image Computing and Computer-Assisted Intervention (MICCAI’003). Volume 2879 of LNCS., Montreal 886–893Google Scholar
  84. Parrish T, Mulderink T, Gitelman D, Mesulam M (2001) Caffeine as a BOLD contrast booster. Neuroimage 13:S1001Google Scholar
  85. Preibisch C, Pilatus U, Bunke J, Hoogenraad F, Zanella F, Lanfermann H (2003) Functional MRI using sensitivityencoded echo planar imaging (SENSE-EPI). Neuroimage 19:pp 412–421.PubMedGoogle Scholar
  86. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedGoogle Scholar
  87. Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318PubMedGoogle Scholar
  88. Schiffbauer H, Ferrari P, Rowley HA, Berger MS, Roberts TP (2001) Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 49:1313–1320PubMedGoogle Scholar
  89. Schmidt CF, Pruessmann KP, Jaermann T, Lamerichs R, Boesiger P (2002) High resolution fMRI using SENSE at 3.0 Tesla. In: Proc Intl Soc Magn Reson Med 2002 May 15:125Google Scholar
  90. Schreiber A, Hubbe U, Ziyeh S, Hennig J (2000) The infl uence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21:1055–1063PubMedGoogle Scholar
  91. Seifritz E, Bilecen D, Hanggi D, Haselhorst R, Radu EW, Wetzel S, Seelig J, Scheffler K (2000) Effect of ethanol on BOLD response to acoustic stimulation: implications for neuropharmacological fMRI. Psychiatry Res 99:1–13PubMedGoogle Scholar
  92. Seto E, Sela G, McIlroy WE, Black SE, Staines WR, Bronskill MJ, McIntosh AR, Graham SJ (2001) Quantifying head motion associated with motor tasks used in fMRI. Neuroimage 14:284–297PubMedGoogle Scholar
  93. Skirboll SS, Ojemann GA, Berger MS, Lettich E, Winn HR (1996) Functional cortex and subcortical white matter located within gliomas. Neurosurgery 38:678–684PubMedGoogle Scholar
  94. Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903PubMedGoogle Scholar
  95. Smits M, Peeters RR, Van Hecke P, Sunaert S (2007) A 3T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants. Neuroradiology 49:61–71PubMedGoogle Scholar
  96. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedGoogle Scholar
  97. Song AW, Popp CA, Mao J, Dixon WT (2000) fMRI: methodology — acquisition and processing. Adv Neurol 83:177–185PubMedGoogle Scholar
  98. Srivastava G, Crottaz-Herbette S, Lau KM, Glover GH, Menon V (2005) ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. Neuroimage 24:50–60PubMedGoogle Scholar
  99. Stippich C, Kress B, Ochmann H, Tronnier V, Sartor K (2003) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: Indication, investigation strategy, possibilities and limitations of clinical application. Rofo-Fortschritte Auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren 175, pp 1042–1050Google Scholar
  100. Sunaert S, Dymarkowski S, Van Oostende S, Van Hecke P, Wilms G, Marchal G (1998) Functional magnetic resonance imaging (fMRI) visualises the brain at work. Acta Neurologica Belgica 98:8–16PubMedGoogle Scholar
  101. Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465PubMedGoogle Scholar
  102. Tomczak RJ, Wunderlich AP, Wang Y, Braun V, Antoniadis G, Gorich J, Richter HP, Brambs HJ (2000) fMRI for preoperative neurosurgical mapping of motor cortex and language in a clinical setting. J Comput Assist Tomogr 24:927–934PubMedGoogle Scholar
  103. Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279PubMedGoogle Scholar
  104. Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16:1062–1067PubMedGoogle Scholar
  105. Ugurbil K, Hu X, Chen W, Zhu XH, Kim SG, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213PubMedGoogle Scholar
  106. Ward HA, Riederer SJ, Grimm RC, Ehman RL, Felmlee JP, Jack CR Jr (2000) Prospective multiaxial motion correction for fMRI. Magn Reson Med 43:459–469PubMedGoogle Scholar
  107. Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P (2002) Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48:860–866PubMedGoogle Scholar
  108. Weisskoff RM (1995) Functional MRI: are we all moving towards artifactual conclusions? Or fMRI fact or fancy? NMR Biomed 8:101–103PubMedGoogle Scholar
  109. Weisskoff RM (1996) Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 36:643–645PubMedGoogle Scholar
  110. Windischberger C, Langenberger H, Sycha T, Tschernko EA, Fuchsjager-Mayerl G, Schmetterer L, Moser E (2002) On the origin of respiratory artifacts in BOLD-EPI of the human brain. Magn Reson Imaging 20:575–582PubMedGoogle Scholar
  111. Yamada K, Naruse S, Nakajima K, Furuya S, Morishita H, Kizu O, Maeda T, Takeo K, Shimizu K (1997) Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5T: preliminary results by cine-MR venography. J Magn Reson Imaging 7:347–352PubMedGoogle Scholar
  112. Yang X, Hyder F, Shulman RG (1997) Functional MRI BOLD signal coincides with electrical activity in the rat whisker barrels. Magn Reson Med 38:874–877PubMedGoogle Scholar
  113. Yousry TA, Schmid UD, Schmidt D, Hagen T, Jassoy A, Reiser MF (1996) The central sulcal vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging. J Neurosurg 85:608–617PubMedGoogle Scholar
  114. Zeffiro T (1996) Clinical functional image analysis: artifact detection and reduction. Neuroimage 4:S95–100PubMedGoogle Scholar
  115. Zhang X, Van de Moortele PF, Pfeuffer J, Hu X (2001) Elimination of k-space spikes in fMRI data. Magn Reson Imaging 19:1037–1041PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ronald Peeters
    • 1
  • Stefan Sunaert
    • 1
  1. 1.Department of RadiologyUniversity Hospitals of the Catholic University of LeuvenLeuvenBelgium

Personalised recommendations