Introduction to Presurgical Functional MRI

  • Christoph Stippich
Part of the Medical Radiology book series (MEDRAD)


Functional magnetic resonance imaging (fMRI) is a modern, non-invasive imaging technique to measure and localize specific functions of the human brain without application of radiation (Bandettini et al. 1992; Kwong et al. 1992). Brain function is assessed indirectly with high spatial resolution via detection of local hemodynamic changes in capillaries (Menon et al. 1995) and draining veins (Frahm et al. 1994) of so-called “functional areas”, e.g. regions of the human brain that govern motor, sensory, language or memory functions. Here, specific stimulation of the respective neurofunctional system is required — spontaneous brain activity can not be measured. The blood-oxygen-level-dependent (BOLD) technique makes use of blood as an intrinsic contrast (Ogawa et al. 1990; Ogawa et al. 1992; Ogawa et al. 1993), rendering intravenous application of paramagnetic contrast agents (Belliveau et al. 1991) or radioactive substances unnecessary (Mazziotta et al. 1982; Raichle 1983; Fox et al. 1986; Holman and Devous 1992).


Functional Magnetic Resonance Imaging Blood Oxygenation Level Dependent Tional Magnetic Resonance Imaging Cognitive Brain Function Motor Hand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Khalil B, Schlaggar BL (2002). Is it time to replace the Wada test? Neurology 59(2):160–161PubMedGoogle Scholar
  2. Amunts K, Malikovic A, et al (2000). Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage 11(1):66–84PubMedCrossRefGoogle Scholar
  3. Amunts K, Schleicher A, et al (1999). Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341PubMedCrossRefGoogle Scholar
  4. Bandettini PA, Wong EC, et al (1992). Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397PubMedCrossRefGoogle Scholar
  5. Baumann SB, Noll DC, et al (1995). Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1(4):191–197PubMedCrossRefGoogle Scholar
  6. Baxendale S (2002) The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review.” J Clin Exp Neuropsychol 24(5): 664–76PubMedGoogle Scholar
  7. Belliveau JW, Kennedy Jr DN, et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719PubMedCrossRefGoogle Scholar
  8. Benbadis SR, Binder JR, et al (1998) Is speech arrest during wada testing a valid method for determining hemispheric representation of language? Brain Lang 65(3):441–446.PubMedCrossRefGoogle Scholar
  9. Berger H (1929) Über das Elektroenzephalogramm des Menschen. Arch Psychiatr Nervenk 87:527–570CrossRefGoogle Scholar
  10. Binder JR, Achten E, et al (2002) Functional MRI in epilepsy. Epilepsia 43(Suppl 1):51–63CrossRefGoogle Scholar
  11. Bittar RG, Olivier A, et al (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921PubMedGoogle Scholar
  12. Buckner RL, Bandettini PA, et al (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci USA 93(25):14878–14883PubMedCrossRefGoogle Scholar
  13. Cedzich C, Taniguchi M, et al (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38(5):962–970PubMedCrossRefGoogle Scholar
  14. Coenen VA, Krings T, et al (2001) Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49(1):86–92; discussion 92–93PubMedCrossRefGoogle Scholar
  15. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173PubMedCrossRefGoogle Scholar
  16. Detre JA, Leigh JS, et al (1992) Perfusion imaging. Magn Reson Med 23(1):37–45PubMedCrossRefGoogle Scholar
  17. Duffau H, Capelle L, et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778PubMedGoogle Scholar
  18. Duffau H, Capelle L, et al (1999) Intra-operative direct electrical stimulations of the central nervous system: the Salpetriere experience with 60 patients. Acta Neurochir (Wien) 141(11):1157–1167CrossRefGoogle Scholar
  19. Duffau H, Capelle L, et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125(Pt 1):199–214Google Scholar
  20. Fernandez G, de Greiff A, et al (2001) Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage 14(3):585–594PubMedCrossRefGoogle Scholar
  21. Fesl G, Moriggl B, et al (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20(1):601–610PubMedCrossRefGoogle Scholar
  22. Fox PT, Mintun MA, et al (1986) Mapping human visual cortex with positron emission tomography. Nature 323(6091):806–809PubMedCrossRefGoogle Scholar
  23. Fox PT and Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83(4):1140–1444PubMedCrossRefGoogle Scholar
  24. Frahm J, Merboldt KD, et al (1994) Brain or vein — oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7(1–2):45–53PubMedCrossRefGoogle Scholar
  25. Friston K (1996) Statistical parametric mapping and other analyses of functional imaging data. Brain mapping: the methods. MJ Toga AW. New York, Academic press: 363–386Google Scholar
  26. Gaillard WD, Bookheimer SY and M Cohen (2000) The use of fMRI in neocortical epilepsy. Adv Neurol 84:391–404PubMedGoogle Scholar
  27. Gevins A (1995) High-resolution electroencephalographic studies of cognition. Adv Neurol 66:181–195; discussion 195–198PubMedGoogle Scholar
  28. Gevins A, Leong H, et al (1995) Mapping cognitive brain function with modern high-resolution electroencephalography. Trends Neurosci 18(10):429–436PubMedCrossRefGoogle Scholar
  29. Gold S, Christian B, et al (1998) Functional MRI statistical software packages: a comparative analysis. Hum Brain Mapp 6(2):73–84PubMedCrossRefGoogle Scholar
  30. Grabowski TJ (2000) Investigating language with functional neuroimaging. Brain mapping: the systems. MJ Toga AW. San Diego, San Francisco, New York, Boston, London, Sydney, Tokio: Academic Press: 425–461Google Scholar
  31. Grummich P, Nimsky C, et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: A clinical study on the difference between and congruence of both modalities. Neuroimage 32(4):1793–1803PubMedCrossRefGoogle Scholar
  32. Hämäläinen M, Ilmoniemi RJ, et al (1993) Magnetoencephalography-theory, instrumentatation and applications to noninvasive studies of the working human brain. Review of modern physics 65:413–4CrossRefGoogle Scholar
  33. Hari R and Ilmoniemi RJ (1986) Cerebral magnetic fields. Crit Rev Biomed Eng 14(2):93–126PubMedGoogle Scholar
  34. Hirsch J, Ruge MI, et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47(3):711–721; discussion 721–722PubMedCrossRefGoogle Scholar
  35. Holman BL and Devous Sr. MD (1992) Functional brain SPECT: the emergence of a powerful clinical method. J Nucl Med 33(10): 1888–1904PubMedGoogle Scholar
  36. Holodny AI, Gor DM, et al (2005) Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology 234(3): 649–653PubMedCrossRefGoogle Scholar
  37. Holodny AI, Schulder M, et al (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 20(4):609–612PubMedGoogle Scholar
  38. Holodny AI, Schulder M, et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422PubMedGoogle Scholar
  39. Holodny AI, Schwartz TH, et al (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95(6):1082PubMedCrossRefGoogle Scholar
  40. Hulvershorn J, Bloy L, et al (2005) Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time. Neuroimage 24(1):216–223PubMedCrossRefGoogle Scholar
  41. Hulvershorn J, Bloy L, et al (2005) Temporal resolving power of spin echo and gradient echo fMRI at 3T with apparent diffusion coefficient compartmentalization. Hum Brain Mapp 25(2):247–258PubMedCrossRefGoogle Scholar
  42. Kober H, Nimsky C, et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228PubMedCrossRefGoogle Scholar
  43. Krings T, Reinges MH, et al (2001) Functional and diffusionweighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts. J Neurosurg 95(5):816–824PubMedCrossRefGoogle Scholar
  44. Krings T, Reinges MH, et al (2002) Factors related to the magnitude of T2* MR signal changes during functional imaging. Neuroradiology 44(6):459–466PubMedCrossRefGoogle Scholar
  45. Kwong KK, Belliveau JW, et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12): 675–679CrossRefGoogle Scholar
  46. Lee CC, Ward HA, et al (1999) Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol 20(8):1511–1519PubMedGoogle Scholar
  47. Logothetis NK (2002) The neural basis of the blood-oxygenleveldependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037PubMedCrossRefGoogle Scholar
  48. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971PubMedGoogle Scholar
  49. Logothetis NK, Pauls J, et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157PubMedCrossRefGoogle Scholar
  50. Logothetis NK and Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531PubMedCrossRefGoogle Scholar
  51. Logothetis NK and Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769PubMedCrossRefGoogle Scholar
  52. Mazziotta JC, Phelps ME, et al (1982) Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology 32(9):921–937PubMedGoogle Scholar
  53. Menon RS, Ogawa S, et al (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echoplanar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33(3): 453–459.PubMedCrossRefGoogle Scholar
  54. Moller M, Freund M, et al (2005) Real time fMRI: a tool for the routine presurgical localisation of the motor cortex. Eur Radiol 15(2):292–295PubMedCrossRefGoogle Scholar
  55. Ogawa S, Lee TM, et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation.“ Proc Natl Acad Sci USA 87(24):9868–8972PubMedCrossRefGoogle Scholar
  56. Ogawa S, Menon RS, et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812PubMedGoogle Scholar
  57. Ogawa S, Tank DW, et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5PubMedCrossRefGoogle Scholar
  58. Ojemann G, Ojemann J, et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326PubMedGoogle Scholar
  59. Ojemann GA (1991) Cortical organization of language. J Neurosci 11(8):2281–2287PubMedGoogle Scholar
  60. Penfield W (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRefGoogle Scholar
  61. Penfield W (1950) The cerebral cortex of man. New York, MacMillan: 57 ffGoogle Scholar
  62. Raichle ME (1983) Positron emission tomography.“ Annu Rev Neurosci 6:249–267PubMedCrossRefGoogle Scholar
  63. Rausch R, Silfvenious H, et al (1993) Intra-arterial amobarbital procedures. Surgical treatment of the epilepsies. JJ Engel. New York, Raven Press: 341–357Google Scholar
  64. Reinges MH, Nguyen HH, et al (2004) Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 146(4):369–377; discussion 377CrossRefGoogle Scholar
  65. Roberts TP (2003). Functional magnetic resonance imaging (fMRI) processing and analysis. ASNR Electronic Learning Center Syllabus: 1–23Google Scholar
  66. Rutten GJ, Ramsey NF, et al (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51(3):350–360PubMedCrossRefGoogle Scholar
  67. Schreiber A, Hubbe U, et al (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygenlevel-dependent contrast enhancement. AJNR Am J Neuroradiol 21(6):1055–1063PubMedGoogle Scholar
  68. Shinoura N, Yamada R, et al (2005) Preoperative fMRI, tractography and continuous task during awake surgery for maintenance of motor function following surgical resection of metastatic tumor spread to the primary motor area. Minim Invasive Neurosurg 48(2):85–90PubMedCrossRefGoogle Scholar
  69. Steger TR and Jackson EF (2004) Real-time motion detection of functional MRI data. J Appl Clin Med Phys 5(2):64–70PubMedCrossRefGoogle Scholar
  70. Stippich C, Hofmann R, et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277(1):25–28PubMedCrossRefGoogle Scholar
  71. Stippich C, Kapfer D, et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol.“ Neurosci Lett 285(2):155–159PubMedCrossRefGoogle Scholar
  72. Stippich C, Heiland S, et al (2002) Functional magnetic resonance imaging: Physiological background, technical aspects and prerequisites for clinical use. Rofo 174(1):43–49PubMedGoogle Scholar
  73. Stippich C, Kress B, et al (2003a) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Rofo 175(8):1042–1050PubMedGoogle Scholar
  74. Stippich C, Mohammed J, et al (2003b) Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett 346(1–2):109–113PubMedCrossRefGoogle Scholar
  75. Stippich C, Ochmann H and Sartor K (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging.“ Neurosci Lett 331(1):50–54PubMedCrossRefGoogle Scholar
  76. Stippich C, Rapps N et al (2007) Feasibility of routine preoperative functional magnetic resonance imaging for localizing and lateralizing language in 81 consecutive patients with brain tumors. Radiology in pressGoogle Scholar
  77. Stippich C, Romanowski A, et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364(2):90–93PubMedCrossRefGoogle Scholar
  78. Stippich C, Romanowski A, et al (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381(3):264–268PubMedCrossRefGoogle Scholar
  79. Sunaert S and Yousry TA (2001) Clinical applications of functional magnetic resonance imaging. Neuroimaging Clin N Am 11(2):221–236, viiiPubMedGoogle Scholar
  80. Thulborn K (2006) Clinical functional Magnetic Resonance Imaging. Current Protocols in Magnetic Resonance Imaging. EM Haacke, John Wiley & Sons, IncGoogle Scholar
  81. Thulborn, KR (1998) A BOLD move for fMRI. Nat Med 4(2): 155–156PubMedCrossRefGoogle Scholar
  82. Thulborn KR (1999) Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging 10(1):37–50PubMedCrossRefGoogle Scholar
  83. Thulborn KR, Davis D, et al (1996) Clinical fMRI: implementation and experience. Neuroimage 4(3 Pt 3):S101–107PubMedCrossRefGoogle Scholar
  84. Towle VL, Khorasani L, et al (2003) Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping. Neuroimage 19(3):684–697PubMedCrossRefGoogle Scholar
  85. Turner R, Le Bihan D, et al (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22(1):159–166PubMedCrossRefGoogle Scholar
  86. Uematsu S, Lesser R, et al (1992) Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery 31(1):59–71; discussion 71–72PubMedCrossRefGoogle Scholar
  87. Ulmer JL, Hacein-Bey L, et al (2004) Lesion-induced pseudodominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery 55(3):569–579; discussion 580–581.PubMedCrossRefGoogle Scholar
  88. Ulmer JL, Salvan CV, et al (2004) The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat 3(6):567–576PubMedGoogle Scholar
  89. Van Westen D, Skagerberg G, et al (2005) Functional magnetic resonance imaging at 3T as a clinical tool in patients with intracranial tumors. Acta Radiol 46(6):599–609PubMedCrossRefGoogle Scholar
  90. Wada J and T Rasmussen (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Experimental and clinical observations. J Neurosurg 17:266–282CrossRefGoogle Scholar
  91. Weiskopf N, Veit R, et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586PubMedCrossRefGoogle Scholar
  92. Wittek A, Kikinis R, et al (2005) Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 8(Pt 2):583–590PubMedGoogle Scholar
  93. Woolsey CN, Erickson TC, and WE Gilson (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51(4):476–506PubMedGoogle Scholar
  94. Yousry TA, Schmid UD, et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157Google Scholar
  95. Zambreanu L, Wise RG, et al (2005) A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114(3):397–407Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christoph Stippich
    • 1
  1. 1.Division of Neuroradiology, Department of NeurologyUniversity of Heidelberg Medical CenterHeidelbergGermany

Personalised recommendations