Skip to main content

Composition of Fault-Containing Protocols Based on Recovery Waiting Fault-Containing Composition Framework

  • Conference paper
Book cover Stabilization, Safety, and Security of Distributed Systems (SSS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4280))

Included in the following conference series:

Abstract

Self-stabilizing protocols provide autonomous recovery from finite number of transient faults. Fault-containing self-stabilizing protocols promise not only self-stabilization but also quick recovery from and small effect of a small number of faults. However, existing composition techniques of self-stabilizing protocols (e.g. fair composition) cannot preserve the fault-containment property when composing fault-containing protocols. In this paper, we present Recovery Waiting Fault-containing Composition (RWFC) framework that preserves the fault-containment property of the composed protocol. We show an example of fault-containing composition of a minimum spanning tree protocol on arbitrary weighted graphs and a median finding protocol on trees via RWFC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dijkstra, E.W.: Self-stabilizing system in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  2. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. In: Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing, pp. 103–118 (1990)

    Google Scholar 

  3. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing a spanning tree. Information Processing Letters 39, 147–151 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lin, X., Ghosh, S.: Maxima finding in a ring. In: Proceedings of the 28th Annual Allerton Conference on Computers, Communication and Control, pp. 662–671 (1991)

    Google Scholar 

  5. Huang, S.T., Chen, N.S.: Self-stabilizing depth-first token circulation on networks. Distributed Computing 7(1), 61–66 (1993)

    Article  Google Scholar 

  6. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self-stabilizing leader election. Information Processing Letters 59, 281–288 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ghosh, S., Gupta, A.: A fault-containing self-stabilizing spanning tree algorithm. Journal of Computing and Information 2(1), 322–338 (1996)

    Google Scholar 

  8. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing algorithms. In: Proceedings of 15th Annual ACM Symposium on Principles of Distributed Computing, pp. 45–54 (1996)

    Google Scholar 

  9. Ghosh, S., He, X.: Fault-containing self-stabilization using priority scheduling. Information Processing Letters 73, 145–151 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems. In: Proceedings of the MCC Workshop on Self-Stabilizing Systems, MCC Technical Report No. STP-379-89 (1989)

    Google Scholar 

  11. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distributed Computing 7, 3–16 (1993)

    Article  Google Scholar 

  12. Bruell, S.C., Ghosh, S., Karaata, M.H., Pemmaraju, S.V.: Self-Stabilizing Algorithms for Finding Centers and Medians of Trees. SIAM Journal on Computing 29, 600–614 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kotani, K., Katayama, Y., Masuzawa, T., Tokura, N.: A self-stabilizing algorithm for constructing a minimum weight spanning tree. Technical Report of IEICE, vol. 92(52), pp. 37–44 (1992) (in Japanese)

    Google Scholar 

  14. Katayama, Y., Masuzawa, T.: A fault-containing self-stabilizing protocol for constructing a minimum spanning tree. Transactions of the IEICE, D-I J-84-D-I(9), 1307–1317 (2001.3) (in Japanese)

    Google Scholar 

  15. Ghosh, S., Gupta, A., Pemmaraju, S.V.: Fault-containing network protocols. In: Proceedings of the ACM Symposium on Applied Computing, pp. 431–437 (1997)

    Google Scholar 

  16. Beauquier, J., Gradinariu, M., Johnen, C.: Cross-Over composition - Enforcement of fairness under unfair adversary. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 19–34. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Azar, Y., Kutten, S., Patt-Shamir, B.: Distributed Error Confinement. In: Proceedings of 22nd Annual ACM Symposium on Principles of Distributed Computing, pp. 33–42 (2003)

    Google Scholar 

  18. Arora, A., Zhang, H.: LSRP: Local Stabilization in Shortest Path Routing. In: Proceedings of International Conference of Dependable Systems and Networks, pp. 139–148 (2003)

    Google Scholar 

  19. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self-stabilizing leader election. Information Processing Letters 59, 281–288 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kutten, S., Patt-Shamir, B.: Time-Adaptive Self Stabilization. In: Proceedings of 16th Annual ACM Symposium on Principles of Distributed Computing, pp. 149–158 (1997)

    Google Scholar 

  21. Dolev, S., Herman, T.: Parallel Composition of Stabilizing Algorithms. In: Proceedings of Fourth Workshop on Self-Stabilizing Systems, pp. 25–32 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamauchi, Y., Kamei, S., Ooshita, F., Katayama, Y., Kakugawa, H., Masuzawa, T. (2006). Composition of Fault-Containing Protocols Based on Recovery Waiting Fault-Containing Composition Framework. In: Datta, A.K., Gradinariu, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2006. Lecture Notes in Computer Science, vol 4280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49823-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49823-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49018-0

  • Online ISBN: 978-3-540-49823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics