Skip to main content

PAHs: Products of Chemical and Biochemical Transformation of Alicyclic Precursors

  • Chapter
PAHs and Related Compounds

Part of the book series: The Handbook of Environmental Chemistry ((HEC3,volume 3 / 3I))

Abstract

An overview is presented of polycyclic aromatic hydrocarbons containing three or more fused rings that are not the products of thermal reactions during combustion of fossil fuels, but are early diagenic products of higher plant and prokaryotic precursors such as terpenoids, hopanoids and steroids. An attempt is made to summarize the major groups of aromatized compounds that have been isolated from samples of sediments and sedimentary rocks, and to categorize the principal reactions involved in their transformation from terpenoid and steroid precursors. These include abiotic, photochemical and biochemical reactions, while brief attention has been directed to other structural modifications. Advantage has been taken of chemical, photochemical and biochemical analogies to rationalize these reactions. Detailed discussion is presented on microbial reactions that act as primers of aromatization: dehydrogenation, hydroxylation, elimination, loss of tertiary methyl groups, and ring fission reactions. Attention is drawn to critical aspects of identifying biogenic PAHs and to their possible adverse environmental effects.

This is based on a review published in Toxicological and Environmental Chemistry, and its presentation in the present revised and extended form has kindly been authorized by the publisher Gordon and Breach Science Publishers SA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham W-R (1994) Microbial hydroxylation of sclareol. Phytochemistry 36: 1421–1424

    Google Scholar 

  2. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156: 5–14

    CAS  Google Scholar 

  3. Ageta H, Shiojima K, Arai Y (1987) Acid-induced rearrangement of triterpene hydrocarbons belonging to the hopane and migrated hopane series. Chem Pharm Bull 35: 2705–2716

    CAS  Google Scholar 

  4. Akhtar M, Barton DHR (1961) The photochemical rearrangement of hypochlorites. J Amer Chem Soc 83: 2213–2214

    CAS  Google Scholar 

  5. Anliker R, Rohr, Heusser H (1955) Über Steroide and Sexualhormone. 205 Mitteilung. Über weitere Umlagerungen in der Ringen C and D der Steroide. Heiv Chim Acta 38: 1171–1177

    CAS  Google Scholar 

  6. Aoyama Y, Yoshida Y, Sato R (1984) Yeast cytochrome P-450 catalyzing lanosterol 14ademethylation II. Lanosterol metabolism by purified P-45014DM and by intact microsomes. J Biol Chem 259: 1661–1666

    CAS  Google Scholar 

  7. Aquino R, de Simone F, Vincieri FF, Pizza C, Gacs-Baitz E (1990) New polyhydroxylated triterpenes from Uncaria tomentosa. J Nat Prod 53: 559–564

    CAS  Google Scholar 

  8. Arigoni D, Barton DHR, Bernasconi R, Djerassi C, Mills JS, Wolff RE (1960) The constitutions of dammarenolic and nyctanthic acid. J Chem Soc 1900–1905

    Google Scholar 

  9. Badger GM, Buttery RG, Kimber RWL, Lewis GE, Moritz AG, Napier IM (1958) The formation of aromatic hydrocarbons at high temperature: I. Introduction. J Chem Soc 2449–2452

    Google Scholar 

  10. Badger GM, Donnelly JK, Spotswood TM (1965) The formation of aromatic hydrocarbons at high temperatures: XIV. The pyrolysis of some tobacco constituents. Aust J Chem 18: 249–1266

    Google Scholar 

  11. Bagli JF, Morand PF, Wiesner K, Gaudry R (1964) A simple synthesis of equilin Tetrahedron Lett 8: 387–389

    Google Scholar 

  12. Balch GC, Metcalf MC, Huestis SY (1995) Identification of potential fish carcinogens in sediment from Hamilton Harbour, Ontario, Canada. Environ Toxicol Chem 14: 79–91

    Google Scholar 

  13. Barakat, AO (1994) Computerized GC/MS detection of monoaromatic and triaromatic steroid hydrocarbons in Alamein crude oil. J High Resol Chromatogr 17: 549–552

    CAS  Google Scholar 

  14. Barton DHR, Beaton JM (1961) A synthesis of aldosterone acetate. J Amer Chem Soc 83: 4083–4089

    CAS  Google Scholar 

  15. Biggs WR, Fetzer JC (1996) Analytical techniques for large polycyclic aromatic hydrocarbons: a review. Trends Anal Chem 15: 196–205

    CAS  Google Scholar 

  16. Bird, TG, Fredricks PM, Jones ERH, Meakins GD (1980) Microbiological hydroxylations: 23. Hydroxylations of fluoro-5a-androstanones by the fungi Calonectria decora, Rhizopus nigricans, and Aspsrgillus ohraceus. J Chem Soc Perkin I 750–755

    Google Scholar 

  17. Björseth A, Knutzen J, Skei J (1979) Determination of polycyclic aromatic hydrocarbons in sediments and mussels from Sandefjord, W Norway, by glass capillary chromatography. Sci Total Environ 13: 71–86

    Google Scholar 

  18. Blunt JW, Hartshorn MP, Kirk DN (1969) Reactions of epoxides: XVII “Backbone rearrangements” of cholest-5-ene and 5,6a-epoxy-5a-cholestane. Tetrahedron 25: 149–153

    CAS  Google Scholar 

  19. Bowers A, Villotti R, Edwards JA, Denot E, Halpern 0 (1962) Steroids: CCII. A new route to 19-nor steroids. J Amer Chem Soc 84: 3204–3205

    CAS  Google Scholar 

  20. Braude EA, Jackman LM, Linstead RP, Lowe G (1960) Hydrogen transfer XII. Dehydrogenation of “blocked” hydroaromatic compounds by quinones. J Chem Soc 3123–3132

    Google Scholar 

  21. Buckel W (1992) Unusual dehydrations in anaerobic bacteria. FEMS Microbiol Revs 88: 211–232

    CAS  Google Scholar 

  22. Burchill P, Herod AA, Pritchard E (1982) Estimation of basic nitrogen compounds in some coal liquefaction products. J Chromatogr 246: 271–295

    CAS  Google Scholar 

  23. Burchill P, Herod AA, Pritchard E (1982) Identification of sulphur heterocycles in coal tar and pitch. J Chromatogr 242: 1–64

    Google Scholar 

  24. Burgstahler AW (1957) A contribution to the anthrasteroid problem. The location of the aromatic C-methyl group and the position of the conjugated double bond. J Amer Chem Soc 79: 6047–6050

    CAS  Google Scholar 

  25. Carman RM (1965) The synthesis of dihydro-and tetrahydro-canaric acid. Aust J Chem 18: 1493–1496

    CAS  Google Scholar 

  26. Carman RM, Cowley D (1965) The structure and partial synthesis of canaric acid. Aust J Chem 18: 213–217

    CAS  Google Scholar 

  27. Carruthers W, Watkins DAM (1964) The constituents of high-boiling petroleum distillates: VIII. Identification of 1,2,3,4-tetrahydro-2,2,9-trimethylpicene in American crude oil. J Chem Soc: 724–729

    Google Scholar 

  28. Chaffee AL, Folkes CRJ (1988) Polycyclic aromatic hydrocarbons in Australian coals: III. Structural elucidation by proton nuclear magnetic resonance spectroscopy. Org Geochem 12: 261–271

    Google Scholar 

  29. Chaffee AL, Johns RB (1983) Polycyclic aromatic hydrocarbons in Australian coals: I. Angularly fused pentacyclic tri-and tetraaromatic components of Victorian brown coal. Geochim Cosmochim Acta 47: 2141–2155

    Google Scholar 

  30. Chaffee AL, Strachan MG, Johns RB (1984) Polycyclic aromatic hydrocarbons in Australian coals: II. Novel tetracyclic components from Victoria brown coal. Geochim Cosmochim Acta 48: 2037–2043

    Google Scholar 

  31. Clements WH, Oris JT, Wissing TE (1994) Accumulation and food chain transfer of fluoranthene and benzo[a]pyrene in Chironomus riparius and Lepomis macrochirus. Arch Environ Contam Toxicol 26: 261–266

    CAS  Google Scholar 

  32. Corbet B, Albrecht P, Ourisson G (1980) Photochemical or photomimetic fossil triterpenoids in sediments and petroleum. J Amer Chem Soc 102: 1171–1173 (1980)

    Google Scholar 

  33. Corbett RE, Smith RAJ (1969) Lichens and fungi: VI. Dehydration rearrangements of 15hydroxyhopanes. J Chem Soc (C) 44–47

    Google Scholar 

  34. Cuvelier, M-E, Berset C, Richard H (1994) Antioxidant constituents in sage (Salvia officinalis). J Agric Food Chem 42: 665–669

    CAS  Google Scholar 

  35. Dannenberg H, Neumann H-G (1964) Dehydrierung von Steroiden: VIII. Dehydrierung von Cholesterin mit Chloranil. Liebigs Ann Chem 675: 152–167

    Google Scholar 

  36. de A Azevedo D, de Aquino Neto FR, Simoneit BRT (1990) Mass spectrometric characteristics of a novel series of ring-C monoaromatic tricyclic terpanes found in Tasmanian tasmanite. Org Mass Spectrom 25: 475–480

    Google Scholar 

  37. de A Azevedo D, de Aquino Neto FR, Simoneit BRT (1994) Mass spectrometric characteristics of two novel series of ring-C monounsaturated tricyclic terpanes found in Tasmanian tasmanite. J Mass Spectrometry 30: 247–256

    Google Scholar 

  38. de A Azevedo D, de Aquino Neto FR, Simoneit BRT, PInto AC (1992) Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Org Geochem 18: 9–16

    Google Scholar 

  39. Dorbon M, Schmitter JM, Arpino P, Guiochon G (1982) Carbazoles et lactames du pétrole: méthode d’extraction et caracterisation. J Chromatogr 246: 255–269

    Google Scholar 

  40. Dunlap CE, Warren S (1943) The carcinogenic activity of some new derivatives of aromatic hydrocarbons: I. Compounds related to chrysene. Cancer Res 3: 605–607

    Google Scholar 

  41. Dunlap NK, Sabol MR, Bauer PE, Watt DS, Reibenspies JH, Anderson OP, Seifert WK, Moldowan JM (1985) Synthesis of biological markers in fossil fuels: 3. Degraded and rearranged C27 hopanes. J Org Chem 50: 1826–1829

    CAS  Google Scholar 

  42. Elks J, Phillips GH, Taylor DAH, Wyman LJ (1954) Studies in the synthesis of cortisone: VIII. A Wagner-Meerwin rearrangement involving rings C and D of the steroid nucleus. J Chem Soc 1739–1749

    Google Scholar 

  43. Ensminger A, Joly G, Albrecht P (1978) Rearranged steranes in sediments and crude oils. Tetrahedron Lett 18: 1575–1578

    Google Scholar 

  44. Farrington JW, Wakeham SG, Lavramento JB, Tripp BW, Teal JM (1986) Aromatic hydrocarbons in New York Bight polychaetes: ultraviolet fluorescence analyses and gas chromatography/gas chromatography-mass spectrometry analyses. Environ Sci Technol 20: 69–72

    CAS  Google Scholar 

  45. Fernandez P, Bayona JM (1989) Determination of bioconcentration factors of isomeric polcyclic aromatic hydrocarbons in polychaete worms by HRGC selective liquid crystalline stationary phases. J High Res Chromatogr 12: 802–806

    CAS  Google Scholar 

  46. Fieser LF, Fieser M (1949) Natural products related to phenanthrene. Reinhold, New York, pp 147–155

    Google Scholar 

  47. Fieser LF, Fieser M (1949) Natural products related to phenanthrene. Reinhold, New York, p 131

    Google Scholar 

  48. Florey K, Ehrenstein M (1954) Investigations on steroids: XXII. Studies on oubagenin. I. J Org Chem 19: 1174–1195

    Google Scholar 

  49. Fuchino H, Konishi S, Imai H, Wada H, Tanaka N (1994) A biodegradation product of betulin. Chem Pharm Bull 42: 379–381

    CAS  Google Scholar 

  50. Garcia KL, Delfino JL, Powell DH (1993) Non-regulated organic compounds in Florida sediments. Water Res 27: 1601–1613

    CAS  Google Scholar 

  51. Gerritse J, Gottschal JC (1993) Two-membered mixed cultures of methanogenic and aerobic bacteria in 02-limited chemostats. J Gen Microbiol 139: 1853–1860

    CAS  Google Scholar 

  52. Greiner AC, Spyckerelle C, Albrecht P (1976) Aromatic hydrocarbons from geological sources: I. New naturally occurring phenanthrene and chrysene derivatives. Tetrahedron 32: 257–260

    Google Scholar 

  53. Grimmer G, Jacob J, Naujack K-W, Dettbarn G (1983) Determination of polycyclic aromatic compounds emitted from brown-coal-fired residential stoves by gas chromatography/mass spectrometry. Anal Chem 55: 892–900

    CAS  Google Scholar 

  54. Habu N, Samejima M, Yoshimoto T (1989) A novel dioxygenase responsible for the Ca-Cß cleavage of lignin model compounds from Pseudomonas sp. TMY 1009. Mokuzai Gakkaishi 35: 26–29

    CAS  Google Scholar 

  55. Hammer CF, Savage DS, Thomson JB, Stevenson R (1964) The conversion of ergosterol to a ring-C benzenoid steroid by a selective aromatization reaction. Tetrahedron 20: 929–941

    CAS  Google Scholar 

  56. Hanson JR, Reese PB, Takahashi JA, Wilson MR (1994) Biotransformation of some stemodane diterpenoids by Cephalosporium aphidicola. Phytochemistry 36: 1391–1393

    CAS  Google Scholar 

  57. Harshbarger JC, Clark JB (1990) Epizootiology of neoplasms in bony fish of North America. Sci Total Environ 94: 1–32

    CAS  Google Scholar 

  58. Hase A, Hites RA (1976) On the origin of polycyclic aromatic hydrocarbons in recent sediments, biosynthesis by anaerobic bacteria. Geochim Cosmochim Acta 40: 1141–1143

    CAS  Google Scholar 

  59. Hauke V, Graff R, Wehrung P, Trendel JM, Albrecht P, Riva A, Hopfgartner G, Gülacar FO, Buchs A, Eakin PA (1992) Novel triterpene-derived hydocarbons of the arborane/ fernane series in sediments: II. Geochim Cosmochim Acta 56: 3595–3602

    Google Scholar 

  60. Hauke V, Graff R, Wehrung P, Trendel JM, Albrecht P, Schwark L, Keely BJ, Peakman TM (1992). Novel triterpene-derived hydocarbons of the arborane/fernane series in sediments: I. Tetrahedron 48: 3915–3924

    CAS  Google Scholar 

  61. Hawkins WE, Walker WW, Overstreet RM, Lytle T, Lytle JS (1988) Dose-related carcinogenic effects of water-borne benzo[a]pyrene on livers of two small fish species. Ecotoxicol Environ Saf 16: 219–231

    CAS  Google Scholar 

  62. Hellou J, Payne JF, Upsall C, Fancey LL, Hamilton C (1994) Bioaccumulation of aromatic hydrocarbons from sediments, a dose-response study with flounder (Pseudopleuronectes americanus). Arch Environ Contam Toxicol 27: 477–485

    CAS  Google Scholar 

  63. Helmstetter MF, Alden RW (1994) Release rates of polynuclear hydrocarbons from natural sediments and their relationship to solubility and octanol-water partitioning. Arch Environ Contam Toxicol 26: 282–291

    CAS  Google Scholar 

  64. Hirschmann R, Snoddy CS, Hiskey CF, Wendler NL (1954) The rearrangement of the steroid C/D rings. J Amer Chem Soc 76: 4013–4025

    CAS  Google Scholar 

  65. Hites RA, LaFlamme RE, Windsor JG, Farrington JF, Deuser WG (1980) Polycyclic aromatic hydrocarbons in an anoxic sediment core from the Pettaquamscutt River ( Rhode Island, USA). Geochim Cosmochim Acta 44: 873–878

    Google Scholar 

  66. Hoffman D, Bondinell WE, Wynder EL (1974) Carcinogenicity of methylchrysenes. Science 183: 215–216

    Google Scholar 

  67. Hosansky NL, Wintersteiner 0 (1956) 8,9-seco derivatives of triacetyldihydroveratramine J Amer Chem Soc 78:3126–3131

    Google Scholar 

  68. Hudlickÿ M (1990) Oxidations in organic chemistry. ACS Monograph 186 American Chemical Society, Washington DC

    Google Scholar 

  69. Hussler G, Albrecht P, Ourisson G, Cesario M, Giolhem J, Pascard C (1984) Benzohopanes, a novel family of hexacyclic geomarkers in sediments and crude oils. Tetrahedron Lett 25: 1179–1182

    CAS  Google Scholar 

  70. Hussler G, Connan J, Albrecht P (1984) Novel families of tetra-and hexacyclic aromatic hopanoids predominant in carbonate rocks and crude oils. Org Geochem 6:39–49

    Google Scholar 

  71. Hynning PA, Remberger M, Neilson AH, Stanley P (1993) Identification and quantification of 16-nor-and 19-norditerpenes and their chlorinated analogues in samples of sediment and fish. J Chromatogr 643: 439–452

    CAS  Google Scholar 

  72. Ingledew WM, Tresguerres MEF, Canovas JL (1971) Regulation of the enzymes of the hydroaromatic pathway in Acinetobacter calco-aceticus. J Gen Microbiol 68: 273–282

    CAS  Google Scholar 

  73. Iorizzi M, de Riccardis F, Minale L, Palagiano E, Riccio R, Debitus C, Duhet D (1994) Polyoxygenated marine steroids from the deep water starfish Styracaster caroli. J Nat Prod 57: 1361–1373

    CAS  Google Scholar 

  74. Jones KC, Stratford JA, Waterhouse KS, Furlong ET, Giger W, Hites RA, Schaffner C, Johnston AE (1989) Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environ Sci Technol 23: 95–101

    CAS  Google Scholar 

  75. Jones KH, Smith RT, Trudgill PW (1993) Diketocamphane enantiomer-specific `BaeyerVilliger’ monooxygenases from camphor-grown Pseudomonas putida ATCC 171453. J Gen Microbiol 139: 797–805

    CAS  Google Scholar 

  76. Kalvoda J, Heusler K, Ueberwasser H, Anner G, Wettstein A (1963) 19-norsteroide: IV. Über die reduktive Atherspaltung bei 5a-halogen-6/3,19-oxido-steroiden. Helv Chim Acta 46: 1351–1369

    Google Scholar 

  77. Kawamura K, Suzuki I, Fujii Y, Watanabe 0 (1994) Ice core record of polycyclic aromatic hydrocarbons over the past 400 years. Naturwiss 81: 502–505

    CAS  Google Scholar 

  78. Keith LA, Telliard WE (1979) Priority pollutants: I - a perspective view. Environ Sci Technol 13: 416–423

    Google Scholar 

  79. Knorr M, Schenk D (1968) Zur Frage der Synthese polyzyklischer Aromate durch Bakterien. Arch Hyg 152 /3: 282–285

    CAS  Google Scholar 

  80. Kupchan SM, Court WA, Dailey RG, Gilmore CJ, Bryan RF (1972) Triptolide and tripdiolide, novel antileukemic diterpene triepoxides from Tripterygium wilfordii. J Amer Chem Soc 94: 7194–7195

    CAS  Google Scholar 

  81. Kutney JP, Hewitt GM, Kurihara T, Salisbury PJ, Sindelar RD, Stewart KL, Townley PM, Chalmers WT, Jacoli GG (1981) Cytotoxic diterpenes triptolide, tripdiolide and cytotoxic triterpenes from tissue cultures of Tripterygium wilfordii. Can J Chem 59: 2677–2683

    CAS  Google Scholar 

  82. LaFlamme RE, Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 42: 289–303

    CAS  Google Scholar 

  83. LaFlamme RE, Hites RA (1979) Tetra-and pentacyclic, naturally-occurring, aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 43: 1687–1691

    CAS  Google Scholar 

  84. Landrum PF (1989) Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ Sci Technol 23: 588–595

    CAS  Google Scholar 

  85. Lang KF, H Buffleb (1958) Die Pyrolyse des a-and ß-methyl-naphthalins. Chem Ber 91: 2866–2870

    CAS  Google Scholar 

  86. Leppik RA (1989) Steroid catechol degradation, disecoandrostane intermediates accumulated by Pseudomonas transposon mutant strains. J Gen Microbiol 135: 1979–1988

    CAS  Google Scholar 

  87. Lijinsky W, Taha CR (1961) The pyrolysis of 2-methylnaphthalene. J Org Chem 26: 3566–3568

    CAS  Google Scholar 

  88. Lohmann F, Trendel JM, Hetru C, Albrecht P (1990) C-29 tritiated ß-amyrin: chemical synthesis aiming at the study of aromatization processes in sediments. J Labelled Cmpds Radiopharmaceut 28: 377–386

    CAS  Google Scholar 

  89. Lowe SE, Jain MK, Zeikus JG (1993) Biology, ecology and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Revs 57: 451–509

    CAS  Google Scholar 

  90. Lu S-T, Kaplan IR (1992) Diterpanes, triterpanes, steranes and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals. Geochim Cosmochim Acta 56: 2761–2788

    CAS  Google Scholar 

  91. Ludwig B, Hussler G, Wehrung P, Albrecht P (1981) C26–C29 triaromatic steroid derivatives in sediments and petroleums. Tetrahedron Lett 22: 3313–3316

    Google Scholar 

  92. Mackie RI, White BA, Bryant MP (1991) Lipid metabolism in anaerobic ecosystems. Crit Revs Microbiol 17: 449–479

    CAS  Google Scholar 

  93. Madyastha KM, Shankar VN (1994) Role of neutral metabolites in microbial conversion of 3ß-acetoxy-19-hydoxycholest-5-ene into estrone. Appl Environ Microbiol 60: 1512–1518

    CAS  Google Scholar 

  94. Mahaffey WR, Gibson DT, Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens, formation of polycyclic aromatic acids from benz[a]anthracene. Appl Environ Microbiol 54: 2415–2423

    CAS  Google Scholar 

  95. Mann J (1987) Secondary metabolism, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  96. Matsuzawa S, Garrigues P, Setokuchi O, Sato M, Yamamoto T, Shimizu Y, Tamura M (1990) Separation and identification of monomethylated polycyclic aromatic hydrocarbons in heavy oil. J Chromatogr 498: 25–33

    CAS  Google Scholar 

  97. Meador JP, Stein JE, Reichert WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Revs Environ Contam Toxicol 143: 79–164

    CAS  Google Scholar 

  98. Mikesel MD, Kukor JJ, Olsen RH (1993) Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleum-contaminated aquifer. Biodegradation 4: 249–259

    Google Scholar 

  99. Milanova R, Moore M, Hirai Y (1994) Hydroxylation of synthetic abietane diterpenes by Aspergillus and Cunninghamella species: novel route to the family of diterpenes isolated from Tripterygium wilfordii. J Nat Prod 57: 882–889

    CAS  Google Scholar 

  100. Moldowan JM, Fago FH (1986) Structure and significance of a novel rearranged mono-aromatic steroid hydrocarbon in petroleum. Geochim Cosmochim Acta 50: 343–351

    CAS  Google Scholar 

  101. Moldowan JM, Fao FJ, Carlson RMK, Young DC, van Duyne G, Clardy J, Schoell M, Pillinger CT, Watt DS (1991) Rearranged hopanes in sediments and petroleum. Geochim Cosmochim Acta 55: 3333–3353

    CAS  Google Scholar 

  102. Motohasi N, Meyer R, Molnar J, Parkanyi, Fang X (1995) Chromatographic determination of benz[c]acridines and related compounds in airborne carcinogens. J Chromatogr 710: 117–128

    Google Scholar 

  103. Neilson AH (1994) Organic chemicals in the aquatic environment, distribution, fate and toxicity Lewis, Boca Raton, Florida

    Google Scholar 

  104. Neilson AH, Allard A-S, Hynning P-A, Remberger M (1988) Transformations of halogenated aromatic aldehydes by metabolically stable anaerobic enrichment cultures. Appl Environ Microbiol 54: 2226–2236

    CAS  Google Scholar 

  105. Niaussat P, Auger C, Mallet L (1970) Apparition relativ de quantités d’hydrocarbures cancérigènes dans des cultures pures de Bacillus badius, en fonction de la présence, dans le milieu, de certains composés chimiques. CR Acad Sci Paris Ser D 270: 1042–1045

    CAS  Google Scholar 

  106. Niaussat P, Mallet L, Ottenwaelder J (1969) Apparition de benzo-3,4-pyréne dans diverses souches de phyto-plancton marin cultivées vitro. Rôle éventuel des bactéries associées CR Acad Sci Paris Ser D 268: 1109–1112

    CAS  Google Scholar 

  107. Niimi AJ, Dookhran GP (1989) Dietary absorption efficiencies and elimination rates of polycyclic aromatic hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri). Environ Toxicol Chem 8: 719–722

    CAS  Google Scholar 

  108. Nishioka M, Chang H-V Lee ML (1986) Structural characteristics of polycyclic aromatic hydrocarbon isomers in coal tars and combustion products. Environ Sci Technol 20: 1023–1027

    CAS  Google Scholar 

  109. Ogilvie AG, Hanson JR (1972) The aromatization of some 3-substituted 5a,6a-epoxysteroids. J Chem Soc Perkin I 1981–1983

    Google Scholar 

  110. Oikari A, Holmbom, Bister H (1982) Uptake of resin acids into tissues of the trout (Salmo gairdneri Richardson). Ann Zool Fennici 19: 61–64

    CAS  Google Scholar 

  111. Ougham Hj, Taylor DG, Trudgill PW (1983) Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-A3–4,5,5-trimethylcyclopentylacetic acid by Pseudomonas putida. J Bacteriol 153: 140–152

    Google Scholar 

  112. Ourisson G, Albrecht P, Rohmer M (1979) The hopanoids. Palaeochemistry and biochemistry of a group of natural products. Pure Appl Chem 51: 709–729

    Google Scholar 

  113. Peakman TM, de Leeuw JW, Rijpstra WI (1992) Identification and origin of 48(14)5a-and 4195a-sterenes and related hydrocarbons in an immature bitumen from the Monterey Formation, California. Geochim Cosmochim Acta 56: 1223–1230

    Google Scholar 

  114. Peakman TM, Ellis K, Maxwell JR (1988) Acid-catalysed rearrangements of steroid alkenes: 2. A re-investigation of the backbone rearrangement of cholest-5-ene. J Chem Soc Perkin Trans I 1971–1075

    Google Scholar 

  115. Peakman TM, Maxwell JR (1987) Early diagenic pathways of steroid alkenes. Org Geochem 13: 583–592

    Google Scholar 

  116. Pelletier SW (1992) Studies in the chemistry of natural products, rearrangement reactions of diterpenoid and norditerpenoid alkaloids. J Nat Prod 55: 1–24

    CAS  Google Scholar 

  117. Pereira WE, Rostad CE (1983) Terpenoid marker compounds derived from biogenic precursors in volcanic ash from Mount St Helens, Washington. Geochim Cosmochim Acta 47: 2287–2291

    Google Scholar 

  118. Philp RP, Oung J-U (1988) Biomarkers. Anal Chem 60: 887A - 896A

    CAS  Google Scholar 

  119. Prairie RL, Talalay P (1963) Enzymatic formation of testololactone. Biochemistry 2: 203–208

    CAS  Google Scholar 

  120. RamaKrishna NVS, Cavalieri EL, Rogan EG, Dolnikowski G, Cerny RL, Gross ML, Jeong H, Jankowiak R, Small GJ (1992) Synthesis and structure determination of the adducts of the potent carcinogen 7,12-dimethylbenz[a]anthracene and deoxyribonucleosides formed by electrochemical oxidation: models for metabolic activation by one-electron oxidation. J Amer Chem Soc 114: 1863–1874

    CAS  Google Scholar 

  121. Ramdahl T (1983) Retene–a molecular marker of wood combustion in ambient air. Nature 306: 580–583

    CAS  Google Scholar 

  122. Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1993) Sources of fine organic aerosol: 2. Noncatalyst and catalyst-equipped automobiles and heavy diesel trucks. Environ Sci Technol 27: 636–651

    Google Scholar 

  123. Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1993) Sources of fine organic aerosol:

    Google Scholar 

  124. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904

    Google Scholar 

  125. Rubinstein I, Sieskind O, Albrecht P (1975) Rearranged sterenes in a shale, occurrence and simulated formation. J Chem Soc Perkin I 1833–1836

    Google Scholar 

  126. Schaeffer P, Adam P, Trendel J-M, Albrecht P, Connan J (1995) A novel series of benzohopanes widespread in sediments. Org Geochem 23:87–89

    Google Scholar 

  127. Schaeffer P, Poinsot J, Hauke V, Adam P, Wehrung P, Trendel JM, Albrecht P, Dessort D, Connan J (1994) Novel optically active hydrocarbons in sediments: evidence for an extended biological cyclization of higher regular polyprenols. Angew Chem Int Engl 33: 1166–1169 (1994)

    Google Scholar 

  128. Schink B (1992) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 276–299

    Google Scholar 

  129. Schmidt K (1978) Biosynthesis of carotenoids In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 729–750

    Google Scholar 

  130. Shapiro RH (1963) In: Djerassi C (ed) Steroid reactions. Holden-Day, San Francisco, pp 371–402

    Google Scholar 

  131. Shiojima K, Arai Y, Masuda K, Takase Y, Ageta T, Ageta H (1992) Mass spectra of pentacyclic triterpenoids. Chem Pharm Bull 40: 1683–1690

    CAS  Google Scholar 

  132. Sih CJ, Wang KC, Tai HH (1968) Mechanisms of steroid oxidation by microorganisms: XIII. C22 acid intermediates in the degradation of the cholesterol side chain. Biochemistry 7: 796–807

    CAS  Google Scholar 

  133. Simoneit BTR (1977) Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochim Cosmochim Acta 41: 463–476

    CAS  Google Scholar 

  134. Simoneit BTR, Grimalt JO, Wang TG, Cox RE, Hatcher PG, Nissenbaum A (1985) Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Org Geochem 10: 877–889

    Google Scholar 

  135. Simoneit BTR, Mazurek MA (1982) Organic matter of the troposphere: II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmos Environ 16: 2139–2159

    Google Scholar 

  136. Smith GW (1975) The crystal and molecular structure of 22,29,30-trisnorhopane II, C27H46. Acta Cryst B 31: 522–526

    Google Scholar 

  137. Smith KE, Latif S, Kirk DN, White KA (1988) Microbial transformations of steroids: I. Rare transformations of progesterone by Apiocrea chrysosperma. J Steroid Biochem 31, 83–89

    CAS  Google Scholar 

  138. Steadman BL, Farag AM, Bergman HL (1991) Exposure-related patterns of biochemical indicators in rainbow trout exposed to no 2 fuel oil. Environ Toxicol Chem 10: 365–374

    CAS  Google Scholar 

  139. Stoudt TH, McAleer WJ, Koslowski MA, Marlatt V (1958) The microbial dehydrogenation of some pregnanes and allopregnanes to 1,4-pregnadienes. Arch Biochem Biophys 74: 280–281

    CAS  Google Scholar 

  140. Summons RE, Powell TG (1987) Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulfur bacteria. Geochim Cosmochim Acta 51: 557–566

    CAS  Google Scholar 

  141. Sundström G, Larsson A, Tarkpea M (1986) Creosote. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 3, part D. Springer, Berlin Heidelberg New York, pp 159–205

    Google Scholar 

  142. Tan YL, Heit M (1981) Biogenic and abiogenic polynuclear hydrocarbons in sediments from two remote Adirondack lakes. Geochim Cosmochim Acta 45: 2267–2279

    CAS  Google Scholar 

  143. Taylor DG, Trudgill PW (1978) Metabolism of cyclohexane carboxylic acid by Alcaligenes strain WI. J Bacteriol 134: 401–411

    CAS  Google Scholar 

  144. ten Haven HL, Peakman TM, Rullkötter J (1992) A2-Triterpenes, early intermediates in the diagenesis of terrigenous triterpenoids. Geochim Cosmochim Acta 56: 1993–2000

    CAS  Google Scholar 

  145. ten Haven HL, Peakman TM, Rullkötter J (1992) Early diagenetic transformation of higher-plant triterpenoids in deep-sea sediments from Baffin Bay. Geochim Cosmochim Acta 56: 2001–2024

    CAS  Google Scholar 

  146. Tezuka Y, Kikuchi T, Dhanabalasingha B, Karunaratne V, Gunatilaka AAL (1994) Studies on terpenoids and steroids: 25. Complete ’H- and 13C-NMR spectral assignments of salaciquinone, a new 7-oxo-quinonemethide dinortriterpenoid. J Nat Prod 57: 270–276

    CAS  Google Scholar 

  147. Thomson RH (ed.) The chemistry of natural products. Blackie, Glasgow

    Google Scholar 

  148. Trendel JM, Guilhem J, Crisp P, Repeta D, Connon J, Alprecht P (1990) Identification of two demethylated C28 hopanes in biodegraded petroleum. J Chem Soc Chem Comm 424–425

    Google Scholar 

  149. Trendel JM, Lohmann F, Kintzinger JP, Albrecht P, Chiaroni A, Riche C, Cesario M, Guilhem J, Pascard C (1989) Identification of des-A-triterpenoid hydrocarbons occurring in surface sediments. Tetrahedron 45: 4457–4460

    CAS  Google Scholar 

  150. Trudgill PW (1984) Microbial degradation of the alicyclic ring: structural relationships and metabolic pathways. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 131–180

    Google Scholar 

  151. Tsuda K, Nozoe S, Okada Y (1963) An aromatization reaction of a cross-conjugated dienone system with zinc: IV. Synthesis of 11-hydroxyisoequilin and aromatization of the steroid 1,4,8-triene-3,11-dione system. J Org Chem 28: 789–792

    CAS  Google Scholar 

  152. Tsuda K, Ohki E, Nozoe S (1963) An aromatization reaction of a cross-conjugated dienone system with zinc: II. Aromatization of steroidal 1,4-dien-3-one and 1,4,6-trien3-one system with zinc. J Org Chem 28: 783–785

    CAS  Google Scholar 

  153. Ulubelen A, Topcu G (1992) New abietane diterpenoids from Salvia montbretii. J Nat Prod 55: 441–444

    CAS  Google Scholar 

  154. Van Kaam-Peters HME, Köster J, De Leeuw JW, Sinninghe Damsté JS (1995) Occurrence of two novel benzothiophene hopanoid families in sediments. Org Geochem 27: 607616

    Google Scholar 

  155. Varanasi U, Stein JE, Nishimoto M, Reichert WL, Collier TK (1987) Chemical carcinogenesis in feral fish: uptake, activation, and detoxication of organic xenobiotics. Environ Health Perspect 71: 155–170

    CAS  Google Scholar 

  156. Wakeham SG, Schaffner C, Giger W (1980) Polycyclic aromatic hydrocarbons in recent lake sediments: I. Compounds having anthropogenic origins. Geochim Cosmochim Acta 44: 415–429

    Google Scholar 

  157. Wakeham SG, Schaffner C, Giger W (1980) Polycyclic aromatic hydrocarbons in recent lake sediments: II. Compounds derived from biogenic precursors during early diagenesis. Geochim Cosmochim Acta 44: 415–429

    Google Scholar 

  158. Wang KC, You B-J, Yan J-L, Lee S-S (1995) Microbial transformation of lanosterol derivatives with Mycobacterium sp. (NRLL B-3805). J Nat Prod 58: 1222–1227

    CAS  Google Scholar 

  159. Wang T-G, Simoneit BRT (1991). Organic geochemistry and coal petrology of tertiary brown coal in the Zhoujing mine, Baise Basin, South China: 3. Characteristics of poly-cyclic aromatic hydrocarbons. Fuel 70: 819–829

    Google Scholar 

  160. Wang Z, Fingas M, Sergy G (1994) Study of 22-year old Arrow oil samples using bio-marker compounds by GC/MS. Environ Sci Technol 28: 1733–1746

    CAS  Google Scholar 

  161. Wang, Z, Fingas M, Li K (1994) Fractionation of a light crude oil and identification and quantification of aliphatic, aromatic and biomarker compounds by GC-FID and GC-MS: II. J Chromatogr Sci 32: 367–382

    Google Scholar 

  162. Wei H, Songian L (1989) A new maturity parameter based on monoaromatic hopanoids. Org Geochem 16: 1007–1013

    Google Scholar 

  163. Weng C, Gordon MH (1992) Antioxidant activity of quinones extracted from tanshen (Salvia miltiorrhiza Bunge). J Agric Food Chem 40: 1331–1336

    CAS  Google Scholar 

  164. Wenkert E, Fuchs A, McChesney JD (1965) Chemical artifacts from the family Labiatae. J Org Chem 30: 2931–2934

    CAS  Google Scholar 

  165. Windsor JG, Hites RA (1979) Polycyclic aromatic hydrocarbons in Gulf of Maine sediments and Nova Scotia soils. Geochim Cosmochim Acta 43: 27–33

    CAS  Google Scholar 

  166. Wolff, GA, Trendel JM, Albrecht P (1989) Novel monoaromatic triterpenoid hydrocarbons occurring in sediments. Tetrahedron 45: 6721–6728

    CAS  Google Scholar 

  167. Yunker MB, Macdonald RW (1995) Composition and origins of polycyclic aromatic hydrocarbons in the Mackenzie River and on the Beaufort Sea Shelf. Arctic 48: 118–129

    Google Scholar 

  168. Zderic JA, Carpino H, Bowers A, Djerassi C (1963) Steroids: CCXXVIII. The synthesis of equilin Steroids 1: 233–249

    Google Scholar 

  169. Zeman EJ (1994) Complex organic molecules found in interplanetary dust particles. Physics Today 47 (3): 17–19

    CAS  Google Scholar 

  170. Zheng J, Nicholson RA (1996) Influence of two naturally occurring abietane monocarboxylic acids (resin acids) and a chlorinated derivative on release of the inhibitiory neurotransmitter y-aminobutyric acid from trout brain synaptosomes. Bull Environ Contam Toxicol 56: 114–120

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neilson, A.H., Hynning, PÅ. (1998). PAHs: Products of Chemical and Biochemical Transformation of Alicyclic Precursors. In: Neilson, A.H. (eds) PAHs and Related Compounds. The Handbook of Environmental Chemistry, vol 3 / 3I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49697-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49697-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08286-3

  • Online ISBN: 978-3-540-49697-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics