Skip to main content

Characterizing Biointerfaces and Biosurfaces in Biomaterials Design

  • Chapter
  • 1576 Accesses

Abstract

Often in composite biomaterials, molecular interactions at various interfaces are known to have significant role on mechanical response of the composite system as well as biocompatibility of the biomaterials. The biomaterial surface elicits a response from tissue that is specific to the nature of the surface and several surface modification techniques are used to analyze the response. Currently, many physical and spectroscopic methods are available to characterize the nature of the biomaterial surface. This Chapter introduces various characterization techniques for characterizing biointerfaces and biosurfaces in biomaterials Design. The important characterization tools used by biomaterials researchers are outlined in the chapter and the fundamental principles governing these tools are elaborated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alves, C.M., Y. Yang, D.L. Carnes, J.L. Ong, V.L. Sylvia, D.D. Dean, R.L. Reis and C.M. Agrawal. Gas plasma treatment of poly(DL-lactic acid) films and its influence on the adhesion and proliferation of osteoblast-like cells. Transactions-7th World Biomaterials Congress, 2004. pp. 768.

    Google Scholar 

  • Agnihotri, A., J.T. Garrett, J. Runt and C.A. Siedlecki. Atomic force microscopy visualization of poly(urethane urea) microphase rearrangements under aqueous environment. Journal of Biomaterials Science Polymer Edition 17(1): 227–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Andrade, J.D. Interfacial phenomena and biomaterials. Medical Instrumentation 7(2): 110–120 (1973).

    CAS  PubMed  Google Scholar 

  • Aoyagi, S., S. Hiromoto, T. Hanawa and M. Kudo. TOF-SIMS investigation of metallic material surface after culturing cells. Applied Surface Science 231–232: 470–474 (2004).

    Article  CAS  Google Scholar 

  • Belu, A.M., D.J. Graham and D.G. Castner. Time-of-flight secondary ion mass spectrometry: Techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24: 3635–3653 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Black, J. Biological Performance of Materials: Fundamentals of Biocompatability. New York: Marcel Deckker Inc. (1992).

    Google Scholar 

  • Blanchemain, N., S. Haulon, B. Martel, M. Traisnel, M. Morcellet and H.F. Hildebrand. Vascular PET prostheses surface modification with cyclodextrin coating: Development of a new drug delivery system. European Journal of Vascular and Endovascular Surgery 29(6): 628–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Blomberg, E., P.M. Claesson and J.C. Fröberg. Surfaces coated with protein layers: A surface force and ESCA study. Biomaterials 19(4–5): 371–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Boukari, A., G. Francius and J. Hemmerlé. AFM force spectroscopy of the fibrinogen adsorption process onto dental implants. Journal of Biomedical Materials Research-Part A 78(3): 466–472 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Briggs, D. and M.P. Seah. Practical Surface Analysis: Auger and X-Ray Photoelectron Spectroscopy (Practical Surface Analysis), 2nd edn. John Wiley & Sons (1996).

    Google Scholar 

  • Bruckbauer, A., D.J. Zhou, D.J. Kang, Y.E. Korchev, C. Abell and D. Klenerman. An addressable antibody nanoarray produced on a nanostructured surface. J. Am. Chem. Soc. 126: 6508–6509 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bruckbauer, A., D.J. Zhou, L.M. Ying, Y.E. Korchev, C. Abell and D. Klenerman. Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125: 9834–9839 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Cacciafesta, P., K.R. Hallam, A.C. Watkinson, G.C. Allen, M.J. Miles and K.D. Jandt. Visualization of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness. Surface Science 491(3): 405–420 (2001).

    Article  CAS  Google Scholar 

  • Charpentier, P.A., A. Maguire and W.K. Wan. Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Applied Surface Science 252(18): 6360–6367 (2006).

    CAS  Google Scholar 

  • Chittur, K.K. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19(4-5): 357–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Christopher, A., C.A. Siedlecki and R.E. Marchant. Atomic force microscopy for characterization of the biomaterial interface. Biomaterials 19(4–5): 441–454 (1998).

    Google Scholar 

  • Crombez, M., P. Chevallier, R.C. Gaudreault, E. Petitclerc, D. Mantovani and G. Laroche. Improving arterial prosthesis neo-endothelialization: Application of a proactive VEGF construct onto PTFE surfaces. Biomaterials 26(35): 7402–7409 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Domke, J., S. Dannöhl, W.J. Parak, O. Müller, W.K. Aicher and M. Radmacher. Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids and Surfaces B: Biointerfaces 19(4): 367–379 (2000).

    Article  CAS  Google Scholar 

  • Dabagh, M., M.J. Abdekhodaie and M.T. Khorasani Effects of polydimethylsiloxane grafting on the calcification physical properties and biocompatibility of polyurethane in a heart valve. Journal of Applied Polymer Science 98(2): 758–766 (2005).

    Article  CAS  Google Scholar 

  • Doneva, T.A., H.B. Yin, P. Stephens, W.R. Bowen and D.W. Thomas. Development and AFM study of porous scaffolds for wound healing applications. Spectroscopy 18(4): 587–596 (2004).

    CAS  Google Scholar 

  • Dubruel, P., E. Vanderleyden, M. Bergadà, P.I. De, H. Chen, S. Kuypers, J. Luyten, J. Schrooten, H.L. Van and E. Schacht. Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces. Surface Science 600(12): 2562–2571 (2006).

    Article  CAS  Google Scholar 

  • Elias, C.N., J.H.C. Lima, E. Costa F. Silva, C. Muller and D.C. Figueira. Surface modification of titanium dental implants by micro-arc oxidation Surface. In: Engineering in Materials Science-Proceedings of a Symposium sponsored by the Surface Engineering Committee of the(MPMD) of the Minerals Metals and Materials Society TMS, 2005. pp.177–183.

    Google Scholar 

  • Feng, Y., W. Yan, D. Yang, J. Feng, X. Wang and S. Zhang. Biological and biomechanical properties of chemically modified SLA titanium implants in vitro and in vivo. Key Engineering Materials 309–311I: 399–402 (2006).

    Article  Google Scholar 

  • Ferguson, S.J., N. Broggini, M. Wieland, M. De Wild, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran and D. Buser. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. Journal of Biomedical Materials Research-Part A 78(2): 291–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Fan, V.H., J.W. Wright, A.H. Wells and L.G. Griffith. Tethered epidermal growth factor as a substrate for bone regeneration. Transactions-7th World Biomaterials Congress, 2004. pp. 926.

    Google Scholar 

  • Feldman, L.C. and J.W. Mayer. Fundamentals of surface and thin film analysis. New York: North Holland (1986).

    Google Scholar 

  • Fishbein, I., S.J. Stachelek, J.M. Connolly, R.L. Wilensky, I. Alferiev and R.J. Levy. Site specific gene delivery in the cardiovascular system. Journal of Controlled Release 109(1-3): 37–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Freeman, C.O. and I.M. Brook. Bone response to a titanium aluminium nitride coating on metallic implants. Journal of Materials Science: Materials in Medicine 17(5): 465–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Frushour, B.J. and J.L. Koenig Raman spectroscopy of proteins. Advances in Infrared and Raman Spectroscopy 1: 35–97 (1975).

    CAS  Google Scholar 

  • Galtayries, A., R. Warocquier-Clérout, M.D. Nagel and P. Marcus. Fibronectin adsorption on Fe-Cr alloy studied by XPS. Surface and Interface Analysis 38(4): 186–190 (2006).

    Article  CAS  Google Scholar 

  • Ginalska, G., D. Kowalczuk and M. Osi ska. A chemical method of gentamicin bonding to gelatine-sealed prosthetic vascular grafts international. Journal of Pharmaceutics 288(1): 131–140 (2005).

    Article  CAS  Google Scholar 

  • Giordano, C., E. Sandrini, V. Busini, R. Chiesa, G. Fumagalli, G. Giavaresi, M. Fini, R. Giardino and A. Cigada. A new chemical etching process to improve endosseous implant osseointegration: In vitro evaluation on human osteoblast-like cells International. Journal of Artificial Organs 29(8): 772–780 (2006).

    CAS  Google Scholar 

  • Göransson, A., C. Gretzer, A. Johansson, Y.T. Sul and A. Wennerberg. Inflammatory response to a titanium surface with potential bioactive properties: An in vitro study Clinical Implant. Dentistry and Related Research 8(4): 210–217 (2006).

    Article  Google Scholar 

  • Gorrieri, O., M. Fini, K. Kyriakidou, A. Zizzi, M. Mattioli-Belmonte, P. Castaldo, A. De Cristofaro, D. Natali, A. Pugnaloni and G. Biagini. In vitro evaluation of biofunctional performances of Ghimas titanium implants. International Journal of Artificial Organs 29(10): 1012–1020 (2006).

    CAS  PubMed  Google Scholar 

  • Hahn, S.K., R. Ohri and C.M. Giachelli. Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnology and Bioprocess Engineering 10(3): 218–224 (2005).

    Article  CAS  Google Scholar 

  • Han, D.K., K. Park, K.D. Park, K.D. Ahn and Y.H. Kim. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Artificial Organs 30(12): 955–959 (2006).

    Article  CAS  PubMed  Google Scholar 

  • He, W., Z. Ma, T. Yong, W.E. Teo and S. Ramakrishna. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26(36): 7606–7615 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Huang, N., P. Yang, Y.X. Leng, J. Wang, H. Sun, J.Y. Chen and G.J. Wan. Surface modification of biomaterials by plasma immersion ion implantation. Surface and Coatings Technology 186(1–2 SPEC ISS): 218–226 (2004).

    Article  CAS  Google Scholar 

  • Harle, J., H-W. Kim, N. Mordan, J.C. Knowles and V. Salih. Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition. Acta Biomaterialia 2(5): 547–556 (2006).

    Article  PubMed  Google Scholar 

  • Hirschmugl, C.J. Frontiers in infrared spectroscopy at surfaces and interfaces. Surface Science 500: 577–604 (2002).

    Article  CAS  Google Scholar 

  • Hole, B.B., J.A. Schwarz, J.L. Gilbert and B.L. Atkinson. A study of biologically active peptide sequences (P-15) on the surface of an ABM scaffold (PepGen P-15TM) using AFM and FTIR. Journal of Biomedical Materials Research—Part A 74(4): 712–721 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Hosaka, M., Y. Shibata and T. Miyazaki. Preliminary-tricalcium phosphate coating prepared by discharging in a modified body fluid enhances collagen immobilization onto titanium. Journal of Biomedical Materials Research-Part B Applied Biomaterials 78(2): 237–242 (2006).

    Article  CAS  Google Scholar 

  • Ishihara, K., J. Watanabe and Y. Iwasaki. Bioinspired polymer surfaces for prevention of bioresponse. Materials Science Forum 426–432(4): 3171–3176 (2003).

    Article  Google Scholar 

  • Jackson, M. Fourier-transform infrared spectroscopic studies of Ca-binding proteins. Biochemistry 30(40): 9681–9686 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Jardine, S. and J.I.B. Wilson. Plasma surface modification of ePTFE vascular grafts. Plasma Processes and Polymers 2(4): 328–333 (2005).

    Article  CAS  Google Scholar 

  • Jena, B.P. and H. Hörber. Atomic Force Microscopy in Cell Biology. New York: Academic press (2002).

    Google Scholar 

  • Kaladhar, K. and C.P. Sharma. Cell mimetic lateral stabilization of outer cell mimetic bilayer on polymer surfaces by peptide bonding and their blood compatibility. Journal of Biomedical Materials Research-Part A 79(1): 23–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kannan, R.Y., H.J. Salacinski, D.S. Vara, M. Odlyha and A.M. Seifalian. Review paper: Principles and applications of surface analytical techniques at the vascular interface. Journal of Biomaterials Applications 21(1): 5–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kazarian, S.G., Chan K.L. Andrew, V. Maquet and A.R. Boccaccini. Characterisation of bioactive and resorbable polylactide/Bioglass_ composites by FTIR spectroscopic imaging. Biomaterials 25(18): 3931–3938 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Klee, D., Z. Ademovic, A. Bosserhoff, H. Hoecker, G. Maziolis and H.J. Erli. Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials 24(21): 3663–3670 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ku, Y., C.P. Chung and J.H. Jang. The effect of the surface modification of titanium using a recombinant fragment of fibronectin and vitronectin on cell behavior. Biomaterials 26(25): 5153–5157 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kokubo, T. Design of bioactive bone substitutes based on biomineralization process. Materials Science and Engineering C 25(2): 97–104 (2005).

    Article  CAS  Google Scholar 

  • Koenig, J.L. Spectroscopy of Polymers. 2nd edn. New York: Elsevier Science (1997).

    Google Scholar 

  • Lee, K.B., S.J. Park, C.A. Mirkin, J.C. Smith and M. Mrksich. Protein Nanoarrays Generated by Dip-Pen Nanolithography. Science 295(5560): 1702–1705 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lenk, T.J., T.A. Horbett, B.D. Ratner and K.K. Chittur. Infrared spectroscopic studies of time-dependent changes in fibrinogen adsorbed to polyurethanes. Langmuir 7(8): 1755–1764 (1991).

    Article  CAS  Google Scholar 

  • Lim, J.H., D.S. Ginger, K.B. Lee, J. Heo, J.M. Nam and C.A. Mirkin. Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces. Angew. Chem. Int. Ed 20: 2411–2414 (2003).

    Google Scholar 

  • McArthur, S.L. Applications of XPS in bioengineering. Surface and Interface Analysis 38(11): 1380–1385 (2006).

    Article  CAS  Google Scholar 

  • Ma, Z., W. He, T. Yong and S. Ramakrishna. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Engineering 11(7–8): 1149–1158 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mueller, M. Fundamentals of Quantum Chemistry: Molecular Spectrocopy and Modern Electronic Structure Computations. Kluwer Publishers (2001).

    Google Scholar 

  • Ma, Z., M. Kotaki, T. Yong, W. He and S. Ramakrishna. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26(15): 2527–2536 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mansur, H., R. Oréfice, M. Pereira, Z. Lobato, W. Vasconcelos and L. Machado. FTIR and UV-vis study of chemically engineered biomaterial surfaces for protein immobilization. Spectroscopy 16(3–4): 351–360 (2002).

    CAS  Google Scholar 

  • Mardilovich, A. and E. Kokkoli. Biomimetic peptide-amphiphiles for functional biomaterials: The role of GRGDSP and PHSRN Biomacromolecules. Biomacromolecules 5(3): 950–957 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Morris, V.J., A.P. Gunning and A.R. Kirby. Atomic Force Microscopy for Biologists. Imperial College Press (1999).

    Google Scholar 

  • Mori, H. and M. Tsukada. New silk protein: Modification of silk protein by gene engineering for production of biomaterials. Reviews in Molecular Biotechnology 74(2): 95–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Morra, M. Biochemical modification of titanium surfaces: Peptides and ECM proteins. European Cells and Materials 12: 1–15 (2006).

    CAS  PubMed  Google Scholar 

  • Morra, M. and V. Cassinelli. Biomaterials surface characterization and modification. International Journal of Artificial Organs 29(9): 824–833 (2006).

    CAS  PubMed  Google Scholar 

  • Morra, M., C. Cassinelli, G. Cascardo, P. Cahalan, L. Cahalan, M. Fini and R. Giardino. Surface engineering of titanium by collagen immobilization Surface characterization and in vitro and in vivo studies. Biomaterials 24(25): 4639–4654 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Morra, M., C. Cassinelli, G. Cascardo, L. Mazzucco, P. Borzini, M. Fini, G. Giavaresi and R. Giardino. Collagen I-coated titanium surfaces: Mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. Journal of Biomedical Materials Research-Part A 78(3): 449–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Murayama, Y., M. Komatsu, K. Kuge and H. Hashimoto. Enhanced peptide molecular imaging using aqueous droplets. Applied Surface Science 252(19): 6774–6776 (2006).

    Article  CAS  Google Scholar 

  • Mani, G., M.D. Feldman, D. Patel and C.M. Agrawal. Coronary stents: A materials perspective. Biomaterials 28(9): 1689–1710 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Mwale, F., H.T. Wang, V. Nelea, L. Luo, J. Antoniou and M.R. Wertheimer. The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells. Biomaterials 27(10): 2258–2264 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons Inc. (1997).

    Google Scholar 

  • Nakamoto, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons Inc. (1997).

    Google Scholar 

  • Ngiam, M., T.R. Hayes, S. Dhara and B. Su. Biomimetic apatite/polycaprolactone (PCL) nanofibres for bone tissue engineering scaffolds. Key Engineering Materials 330–332: 991–994 (2007).

    Article  Google Scholar 

  • Ni, G.X., W.W. Lu, B. Xu, K.Y. Chiu, C. Yang, Z.Y. Li, W.M. Lam and K.D.K. Luk. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials 27(29): 5127–5133 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ohri, R., S.K. Hahn, A.S. Hoffman, P.S. Stayton and C.M. Giachelli. Hyaluronic acid grafting mitigates calcification of glutaraldehyde-fixed bovine pericardium. Journal of Biomedical Materials Research-Part A 70(2): 328–334 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Oyane, A., M. Uchida, Y. Yokoyama, C. Choong, J. Triffitt and A. Ito. Simple surface modification of poly(-caprolactone) to induce its apatite-forming ability. Journal of Biomedical Materials Research-Part A 75(1): 138–145 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Peng, M.C., J.C. Lin, C.Y. Chen, J.J. Wu and X.Z. Lin. Studies of sulfonated polyethylene for biliary stent application. Journal of Applied Polymer Science 92(4): 2450–2457 (2004).

    Article  CAS  Google Scholar 

  • Petrini, P., C.R. Arciola, I. Pezzali, S. Bozzini, L. Montanaro, M.C. Tanzi, P. Speziale and L. Visai. Antibacterial activity of zinc modified titanium oxide surface. International Journal of Artificial Organs 29(4): 434–442 (2006).

    CAS  PubMed  Google Scholar 

  • Pier-Francesco, A., R.J. Adams, M.G.J. Waters and D.W. Williams. Titanium surface modification and its effect on the adherence of Porphyromonas gingivalis: An in vitro study. Clinical Oral Implants Research 17(6): 633–637 (2006).

    Article  PubMed  Google Scholar 

  • Poulin, S., M.C. Durrieu, S. Polizu and L.H. Yahia. Bioactive molecules for biomimetic materials: Identification of RGD peptide sequences by TOF-S-SIMS analysis. Applied Surface Science 252: 6738–6741 (2006).

    Article  CAS  Google Scholar 

  • Park, G.E., M.A. Pattison, K. Park and T.J. Webster. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 26(16): 3075–3082 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Pashkuleva, I., A.P. Marques, F. Vaz and R.L. Reis. Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells. Journal of Materials Science: Materials in Medicine 16(1): 81–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Piner, R.D., J. Zhu, F. Xu, S. Hong and C.A. Mirkin. Dip Pen Nanolithography. Science 283: 661–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ratner, B.D. and S.J. Bryant. Biomaterials: Where we have been and where we are going. Annual Review of Biomedical Engineering 6: 41–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ratner, B.D., A. Hoffman, F.J. Schoen and J. Lemmons. Biomaterials Science: An Introduction to materials in Medicine. 2nd edn. San Diego: Elsevier Academic Press (2004).

    Google Scholar 

  • Recum, A.V. Handbook of Biomaterials Evaluation, 2nd edn. Philadelphia Taylor Francis (1999).

    Google Scholar 

  • Rosencwaig, A. and A. Gersho. Photoacoustic effect with solids: a theoretical treatment. Science 190: 557–560 (1975).

    Google Scholar 

  • Roach, P., D. Farrar and C.C. Perry. Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. Journal of the American Chemical Society 128(12): 3939–3945 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Rodolfa, K. T., A. Bruckbauer, D. Zhou, Y.E. Korchev and D. Klenerman. Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. Int.Edn. 44: 6854–6859 (2005).

    Article  CAS  Google Scholar 

  • Sagvolden, G., I. Giaever, E.O. Pettersen and J. Feder. Cell adhesion force microscopy. In: Proceedings of the National Academy of Sciences of the United States of America 96(2): 471–476 (1999).

    Article  CAS  Google Scholar 

  • Salazar, R.B., A. Shovsky, H. Schonherr and G.J. Vancso. Dip-pen nanolithography on (bio)reactive monolayer and block-copolymer platforms: Deposition of lines of single macromolecules. Small 2(11): 1274–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Schuler, M., G.R.h. Owen, D.W. Hamilton, M. de Wild, M. Textor, D.M. Brunette and S.G.P. Tosatti. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: A cell morphology study. Biomaterials 27(21): 4003–4015 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Servoli, E., D. Maniglio, A. Motta, R. Predazzer and C. Migliaresi. Surface properties of silk fibroin films and their interaction with fibroblasts. Macromolecular Bioscience 5(12): 1175–1183 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sharma, C.P. Surface modifications: Blood compatibility of cardiovascular devices. Transactions-7th World Biomaterials Congress, 2004. pp. 394.

    Google Scholar 

  • M.A.M. Silva, A.E. Martinelli, C. Alves Jr. R.M. Nascimento, M.P. Távora and C.D. Vilar. Surface modification of Ti implants by plasma oxidation in hollow cathode discharge. Surface and Coatings Technology 200(8): 2618–2626 (2006).

    Article  CAS  Google Scholar 

  • Speer, A.G., P.B. Cotton, J. Rode, A.M. Seddon, C.R. Neal, J. Holton and J.W. Costerton. Biliary stent blockage with bacterial biofilm A light and electron microscopy study. Annals of Internal Medicine 108(4): 546–553 (1988).

    CAS  PubMed  Google Scholar 

  • Speranza, G., G. Gottardi, C. Pederzolli, L. Lunelli, R. Canteri, L. Pasquardini, E. Carli, A. Lui, D. Maniglio, M. Brugnara and M. Anderle. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials 25: 2029–2037 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sul, Y.T., Y. Jeong, C. Johansson and T. Albrektsson. Oxidized bioactive implants are rapidly and strongly integrated in bone Part 1-Experimental implants. Clinical Oral Implants Research 17(5): 521–526 (2006).

    Article  PubMed  Google Scholar 

  • Santiago, L.Y., R.W. Nowak, J.P. Rubin and K.G. Marra. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27(15): 2962–2969 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Smith, E., J. Yang, L. McGann, W. Sebald and H. Uludag. RGD-grafted thermoreversible polymers to facilitate attachment of BMP-2 responsive C2C12 cells. Biomaterials 26(35): 7329–7338 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Taha, H., R.S. Marks, L.A. Gheber, I. Rousso, J. Newman, C. Sukenik and A. Lews. Protein printing with an atomic force sensing nanofountainpen. Applied physics letter 83: 1041–1043 (2003).

    Article  CAS  Google Scholar 

  • Takai, E., K.D. Costa, A. Shaheen, C.T. Hung, X.E. Guo. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Annals of Biomedical Engineering 33(7): 963–971 (2005).

    Article  PubMed  Google Scholar 

  • Teixeira, A.I., P.F. Nealey and C.J. Murphy. Responses of human keratocytes to micro-and nanostructured substrates. Journal of Biomedical Materials Research-Part A 71(3): 369–376 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Tsang, T.K., J. Pollack and H.B. Chodash. Inhibition of biliary endoprostheses occlusion by ampicillin-sulbactam in an in vitro model. Journal of Laboratory and Clinical Medicine 130(6): 643–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Urban, M.W. Vibrational Spectroscopy of Molecules and Macromolecules on Surfaces. New York: Wiley-Interscience (1993).

    Google Scholar 

  • Vanselow, R. and R. Howe. Chemistry & Physics of Solid Surfaces. Springer Publishers, (1982).

    Google Scholar 

  • Vanzillotta, P.S., M.S. Sader, I.N. Bastos, Soares G. De Almeida (2006) Improvement of in vitro titanium bioactivity by three different surface treatments. Dental Materials 22(3): 275–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Verma, D., K. Katti and D. Katti. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. Journal of Biomedical Materials Research-Part A 78(4): 772–780 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Verma, D., K. Katti and D. Katti. Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy. Journal of Biomedical Materials Research-Part A 77(1): 59–66 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Vickerman, J.C. Surface Analysis: The Principal Techniques. Chichester: John Wiley and Sons (1997).

    Google Scholar 

  • Wagner, M.S., T.A. Horbett and D.G. Castner. Characterizing multicomponent adsorbed protein films using electron spectroscopy for chemical analysis time-of-flight secondary ion mass spectrometry and radiolabeling: capabilities and limitations. Biomaterials 24: 1897–1908 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., X. Chen, M.L. Clarke and Z. Chen. Vibrational spectroscopic studies on fibrinogen adsorption at polystyrene/protein solution interfaces: Hydrophobic side chain and secondary structure changes. Journal of Physical Chemistry B 110(10): 5017–5024 (2006).

    Article  CAS  Google Scholar 

  • Wang, M.S., L.B. Palmer, J.D. Schwartz and A. Razatos. Evaluating protein attraction and adhesion to biomaterials with the atomic force microscope. Langmuir 20(18): 7753–7759 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Watt, J.F. and J. Wolstenholme. An Introduction to Surface Analysis by XPS and AES. Chichester John Wiley and Sons (2003).

    Google Scholar 

  • Williams, D.F. Definitions in biomaterials. Proceedings of a Consensus Conference of the European Society of Biomaterials Chester England March 3–5 Vol. 4. New York: Elsevier (1987).

    Google Scholar 

  • Winograd, N. Prospects for imaging TOF-SIMS: From fundamentals to biotechnology. Applied Surface Science 203–204: 13–19 (2003).

    Article  Google Scholar 

  • Wolf-Brandstetter, C., A. Lode, T. Hanke, D. Scharnweber and H. Worch. Influence of modified extracellular matrices on Ti6AL4V implants on binding and release of VEGF. Journal of Biomedical Materials Research-Part A 79(4): 882–894 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wood, M.A., C.D.W. Wilkinson and A.S.G. Curtis. The effects of colloidal nanotopography on initial fibroblast adhesion and morphology. IEEE Transactions on Nanobioscience 5(1): 20–31 (2006).

    Article  PubMed  Google Scholar 

  • Wu, Y., B.C. Yang, C.L. Deng, Y.F. Tan and X.D. Zhang. The influence of surface bioactivated modification on titanium percutaneous implants anchored in bone. International Journal of Artificial Organs 29(6): 630–638 (2006).

    CAS  PubMed  Google Scholar 

  • Xu, S. and G.Y. Liu. Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir 13(2): 127–129 (1997).

    Article  Google Scholar 

  • Xu, S., S. Miller, P.E. Laibinis and G.Y. Liu. Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting. Langmuir 15(21): 7244–7251 (1999).

    Article  CAS  Google Scholar 

  • Yim, E.K.F., R.M. Reano, S.W. Pang, A.F. Yee, C.S. Chen and K.W. Leong. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26(26): 5405–5413 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Yao, C., E.B. Slamovich and T.J. Webster. Increased osteoblast adhesion on nano-rough anodized titanium and CoCrMo. In: NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech, Technical Proceedings 2: 119–122 (2006).

    CAS  Google Scholar 

  • Yao, C., E.B. Slamovich and T.J. Webster. Titanium nanosurface modification by anodization for orthopedic applications. In: Materials Research Society Symposium Proceedings 845: 215–220 (2005).

    CAS  Google Scholar 

  • Yoshinari, M., T. Hayakawa, K. Matsuzaka, T. Inoue, Y. Oda, M. Shimono, T. Ide and T. Tanaka. Oxygen plasma surface modification enhances immobilization of simvastatin acid. Biomedical Research 27(1): 29–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Yu, J.J., Y.H. Tan, X. Li, P.K. Kuo and G.Y. Liu. A nanoengineering approach to regulate the lateral heterogeneity of self-assembled monolayers. Journal of the American Chemical Society 128(35): 11,574–11,581 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Y., F. Ai, X. Zang, W. Zhuang, J. Shen and S. Lin. Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Colloids and Surfaces B: Biointerfaces 35(1): 1–5 (2004).

    Article  CAS  Google Scholar 

  • Zhao, B.H., I-S. Lee, W. Bai, F.Z. Cui and H.L. Feng. Improvement of fibroblast adherence to titanium surface by calcium phosphate coating formed with IBAD. Surface and Coatings Technology 193(1-3 SPEC ISS): 366–371 (2005).

    Article  CAS  Google Scholar 

  • Zhu, A.P., Z. Ming and S. Jian. Blood compatibility of chitosan/heparin complex surface modified PTFE vascular graft. Applied Surface Science 241: 485–492 (2005).

    Article  CAS  Google Scholar 

  • Zreiqat, H., S.M. Valenzuela, B.B. Nissan, R. Roest, C. Knabe, R.J. Radlanski, H. Renz and P.J. Evans. The effect of surface chemistry modification of titanium alloy on signaling pathways in human osteoblasts. Biomaterials 26(36): 7579–7586 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zurlinden, K., M. Laub and H.P. Jennissen. Chemical functionalization of a hydroxyapatite based bone replacement material for the immobilization of proteins. Materialwissenschaft und Werkstofftechnik 36(12): 820–827 (2005).

    Article  CAS  Google Scholar 

  • Zhao, M., Q.X. Zheng, X.D. Guo, D.P. Quan, J. Hao and Y.T. Wang. Study on biomimic mineralization of poly lactide-co-glycolide. Chinese Journal of Biomedical Engineering 24(2): 145–149 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana S. Katti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Katti, K.S., Verma, D., Katti, D.R. (2009). Characterizing Biointerfaces and Biosurfaces in Biomaterials Design. In: Shi, D. (eds) NanoScience in Biomedicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49661-8_8

Download citation

Publish with us

Policies and ethics