Abstract
In the seventies, the study of transfer matrices of time-invariant linear systems of ordinary differential equations (ODEs) led to the development of the polynomial approach [20, 22, 44]. In particular, the univariate polynomial matrices play a central role in this approach (e.g., Hermite, Smith and Popov forms, invariant factors, primeness, Bézout/Diophantine equations).
Keywords
- Linear System
- Polynomial Ring
- Noetherian Ring
- Free Resolution
- Weyl Algebra
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Assan J. (1999) Analyse et synthèse de l’approche géométrique pour les systèmes linéaires sur un anneau. PhD thesis. Ecole Centrale de Nantes, France
Becker T., Weispfenning V. (1993) Gröbner Bases. A Computational Approach to Commutative Algebra. Springer, Berlin Heidelberg New York
Bender C. M., Dunne G. V., Mead L. R. (2000) Underdetermined systems of partial differential equations. J. Mathematical Physics 41:6388–6398
Bose N. K. (1985) Multidimensional Systems Theory: Progress, Directions, and Open Problems. D. Reidel Publishing Company, Dordrecht
Chyzak F. (1998) Fonctions holonomes en calcul formel. PhD thesis, Ecole Polytechnique, France
Chyzak F., Mgfun Project. http://algo.inria.fr/chyzak/mgfun.html
Chyzak F., Salvy B. (1998) Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Computation 26:187–227
Chyza F., Quadrat, A., Robertz D. (2002) OreModules project. http://wwwb.math.rwth-aachen.de/OreModules
Chyzak F., Quadrat A., Robertz D. (2003) Linear control systems over Ore algebras: Effective algorithms for the computation of parametrizations. In Proc. IFAC Workshop on Time-Delay Systems TDS03, INRIA Rocquencourt, France
Chyzak F., Quadrat A., Robertz D. (2004) OreModules: A symbolic package for the study of multidimensional linear systems. In Proc. Symposium MTNS04, Leuven, Belgium
Chyzak F., Quadrat A., Robertz D. (2005) Effective algorithms for parametrizing linear control systems over Ore algebras. Applicable Algebra in Engineering, Communication and Computing (AAECC) 16:319–376
Conte G., Perdon A. M. (2000) Systems over rings: geometric theory and applications. Annual Reviews in Control 24:113–124
Cotroneo T. (2001) Algorithms in Behavioral Systems Theory. PhD thesis. University of Groningen, The Netherlands
Fliess M. (1991) Controllability revisited. In A. C. Antoulas ed., Mathematical System Theory. The influence of R. E. Kalman, Springer, Berlin Heidelberg New York
Fliess M., Mounier H. (1998) Controllability and observability of linear delay systems: an algebraic approach. ESAIM COCV 3:301–314.
Galkowski K., Wood J. eds. (2001) Multidimensional Signals, Circuits and Systems, Taylor and Francis, London
Greuel G.-M., Pfister G. (2002) A Singular Introduction to Commutative Algebra. Springer, Berlin Heidelberg New York
Habets L. (1994) Algebraic and computational aspects of time-delay systems. PhD thesis, University of Eindhoven, The Netherlands
Habets L. (1996) Computational aspects of systems over rings — reactability and stabilizability. CWI Quarterly 9:85–95.
Kailath T. (1980) Linear Systems. Prentice-Hall, Upper Saddle River
Kalman R. E., Falb P. L., Arbib M. A. (1969) Topics in Mathematical Systems Theory, McGraw-Hill, New York
Kučera V. (1979) Discrete Linear Control: The Polynomial Equation Approach, Wiley, London
Li H. (2002) Non-commutative Gröbner Bases and Filtered-Graded Transfer. Lecture Notes in Mathematics 1795, Springer, Berlin Heidelberg New York
Malgrange B. (1963) Systèmes à coefficients constants. Séminaire Bourbaki 1962/63, 246:1–11
McConnell J. C., Robson J. C. (2000) Noncommutative Noetherian Rings. American Mathematical Society, Providence
Mounier H. (1995) Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques. PhD Thesis, University of Orsay, France
Mounier H., Rudolph J., Fliess M., Rouchon P. (1998) Tracking control of a vibrating string with an interior mass viewed as delay system. ESAIM COCV 3:315–321
Oberst U. (1990) Multidimensional constant linear systems. Acta Appl. Math. 20:1–175
Pillai H. K., Shankar S. (1998) A behavioral approach to control of distributed systems. SIAM J. Control and Optimization 37:388–408
Polderman J. W., Willems J. C. (1998) Introduction to Mathematical Systems Theory. A Behavioral Approach. TAM 26, Springer, Berlin Heidelberg New York
Pommaret J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht
Pommaret J.-F., Quadrat A. (1998) Generalized Bezout Identity. Applicable Algebra in Engineering, Communication and Computing 9:91–116
Pommaret, J.-F., Quadrat, A. (1999) Localization and parametrization of linear multidimensional control systems. Systems & Control Letters 37:247–260
Pommaret J.-F., Quadrat A. (1999) Algebraic analysis of linear multidimensional control systems. IMA J. Control and Optimization 16:275–297
Pommaret J.-F., Quadrat A. (2000) Equivalences of linear control systems. In Proc. Symposium MTNS 2000, Perpignan, France
Pommaret J.-F., Quadrat A. (2003) A functorial approach to the behaviour of multidimensional control systems. Applied Mathematics and Computer Science 13:7–13
Pommaret J.-F., Quadrat A. (2004) A differential operator approach to multidimensional optimal control. International J. Control 77:821–836
Quadrat A. (1999) Analyse algébrique des systèmes de contrôle linéaires multidimensionnels. PhD thesis, Ecole Nationale des Ponts et Chaussées, France
Quadrat A. (2005) An introduction to the algebraic theory of linear systems of partial differential equations, in preparation.
Quadrat A., Robertz D. (2005) Parametrizing all solutions of uncontrollable multidimensional linear systems. In Proc. 16th IFAC World Congress, Prague, Czech Republic
Quadrat A., Robertz D. (2005) On the blowing-up of stably-free behaviours. In Proc. CDC-ECC05, Sevilla, Spain
Quadrat A., Robertz D. (2005) Constructive computation of bases of free modules over the Weyl algebras. INRIA report 5181 (www.inria.fr/rrrt/rr-5181.html), submitted for publication.
Sontag E. (1976) Linear systems over commutative rings: a survey. Ricerche di Automatica 7:1–34
Rosenbrock H. H. (1970) State Space and Multivariable Theory. Wiley, London
Rotman J. J. (1979) An Introduction to Homological Algebra. Academic Press, New York
Wonham M. (1985) Linear Multivariable Control: a Geometric Approach. Springer, Berlin Heidelberg New York
Wood J. (2000) Modules and behaviours in nD systems theory. Multidimensional Systems and Signal Processing 11:11–48
Youla D. C., Gnavi G. (1979) Notes on n-dimensional system theory. IEEE Transactions on Circuits & Systems 26:259–294
Zerz E. (2000) Topics in Multidimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences 256, Springer, Berlin Heidelberg New York
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chyzak, F., Quadrat, A., Robertz, D. (2007). OreModules: A Symbolic Package for the Study of Multidimensional Linear Systems. In: Chiasson, J., Loiseau, J.J. (eds) Applications of Time Delay Systems. Lecture Notes in Control and Information Sciences, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49556-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-49556-7_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49555-0
Online ISBN: 978-3-540-49556-7
eBook Packages: EngineeringEngineering (R0)