Skip to main content

Qualification Tests for Components and Assemblies

  • Chapter
Reliability Engineering
  • 1771 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3 Qualification of Components and Assemblies

Selection Criteria and Qualification Tests for Components

  1. Barber M.R., “Fundamental timing problems in testing MOS VLSI on modern ATE”, IEEE Design & Test, (1984)8, pp. 90–97.

    Article  Google Scholar 

  2. Birolini A., “Mögl. und Grenzen der Qualifikation, Prüfung und Vorbehandlung von ICs”, QZ, 27(1982)11, pp. 321–326; “Prüfung und Vorbehandlung von Bauelem. und bestück. Leiterplatten”, VDI/VDE Fachtagung, Karlsruhe 1984, VDI Bericht Nr. 519, pp. 49–61; “Neue Ergebnisse aus der Qualif. grosser Halbleiterspeicher”, me, 7(1993) 2, pp. 98–102; —, Büchel W., Heavner D., “Test and screening strategies for large memories”, 1st European Test Conf., Paris: 1989, pp. 276–283.

    Google Scholar 

  3. Brambilla P., Canali C, Fantini F., Magistrali F., Mattana G., “Rel. evaluation of plastic-packaged device for long life applications by THB test”, Microel & Rel., 26(1986)2, pp. 365–384.

    Article  Google Scholar 

  4. Diaz C. et al., “Electrical overstress & electrostatic discharge”, IEEE Trans. Rel., 44(1995)1, pp.2–5.

    Article  Google Scholar 

  5. ESA PSS 01-603: ESA Preferred parts List, 3rd Ed. 1995.

    Google Scholar 

  6. ETH Zurich Reliability Lab., Reports Q2-Q12: Qualification Test for DRAMs 256Kxl, SRAMS 32Kx8, EPROMs 32Kx8, SRAMs 8Kx8, DRAMs lMxl, EEPROMs 8Kx8, SRAMs 128Kx8, DRAMs 4Mxl, EEPROMs 32Kx8, EPROMs 64Kxl6, and FLASH-EPROMs 128Kx8. 1989–92.

    Google Scholar 

  7. Gerling W., “Modern reliability assurance of integr. circuits”. Proc. ESREF’90, Bari, pp. 1–12.

    Google Scholar 

  8. IEC 60068-1 to-5 (1971–2006): Environmental Testing; 60319 (1999): Presentation and Spec. of Rel. Data for El Comp.; 60721-1 to-4 (1987–2003): Classification of Envir. Cond.; 60749-1 to-39 (2002–2006): Semiconductor Devices-Mech. and Climatic Test Methods; 61000-1 to-6 (1990–2006): Electromag. Compatibility (EMC)’, see also QC 001001 (2000): Basic Rules of IEC Quality Assessment Syst. for Electron. Comp. (1ECQ), QC 001002-1006, QC 200000, QC 210000.

    Google Scholar 

  9. IEEE, Special issues on: Reliability of Semiconductor Devices, Proc. IEEE, 62(1974)2; Micron and Submicron Circuit Engineering, Proc. IEEE, 71(1983)5; Integrated circuit technologies of the future, Proc. IEEE, 74(1986)12; VLSI Reliability, Proc. IEEE, 81(1993)5.

    Google Scholar 

  10. Jensen F., Electronic Component Reliability, 1995, Wiley, NY.

    Google Scholar 

  11. MIL-STD-883: Test Methods and Procedures for Microelectronics, Ed. D 1991; see also-199,-202,-750,-810,-976,-13 8535,-M 38510,-S 19500.

    Google Scholar 

  12. Murari B. et al., Smart Power ICs: Technologies and Applications, 1996, Springer, Berlin.

    Google Scholar 

  13. Ousten Y., Danto Y., Xiong N., Birolini A., “Rel. eval. and failure diagnostic of Ta-cap. using freq. anal. and design of exp”, Proc. Int. Symp. for Testing & Failure Analysis, 1992, pp. 189–196.

    Google Scholar 

  14. Powell R.F., Testing Active and Passive Electronic Components, 1987, Dekker, NY.

    Google Scholar 

  15. RAC, PSAC: Parts Selection, Appl and Control, 1993; CAP: Reliable Appl of Components, 1993; PEM2: Reliable Appl of Microcircuits, 1996; HYB: Reliable Appl of Hybrids, 1993; MCM: Reliable Appl of Multichip Modules, 1995.

    Google Scholar 

  16. Ratchev D., “Are NV-Mem. non-volatile?” Proc. 1993 IEEE Workshop on Memory Test., pp. 102–06.

    Google Scholar 

  17. Sawada K. and Kagano S., “An evaluation of IDDQ versus conventional testing for CMOS sea-of-gate ICs”, Int. Test Conf. 1992, pp. 158–167.

    Google Scholar 

  18. Thomas R.W., “The US Department of Defense procurement strategy and the semiconductor industry in the 1990’s”, Proc. 4th Int. Conf. Quality in El Comp., Bordeaux 1989, pp. 1–3.

    Google Scholar 

  19. van de Goor A.J, Testing Semiconductor Memories, 1991, Wiley, NY.

    Google Scholar 

  20. Williams T.W. (Ed.), VLSI-Testing, 1986, North-Holland, Amsterdam.

    Google Scholar 

  21. Wolfgang E., Görlich S., Kölzer J., “Electron beam testing”, Proc. ESREF’90, Bari, pp. 111–120.

    Google Scholar 

  22. Zinke O. et al, Widerstände, Kondensatoren Spulen und ihre Werkstojfe, 1982, Springer, Berlin.

    Google Scholar 

Failure Mechanisms, Failure Analysis

  1. Amerasekera E., Campbell D., Failure Mechanisms in Semiconductor Devices. 1987, Wiley, NY.

    Google Scholar 

  2. Barbottin G., et al. (Eds.), Instabilities in Silicon Devices, 1986, North-Holland, Amsterdam.

    Google Scholar 

  3. Chen P., et al, “A unified compact scalable δId model for hot carrier reliability simulation”, Proc. Int. Rel. Phys. Symp., 1999, pp. 243–248.

    Google Scholar 

  4. Ciappa M., Ausfallmech. integrierter Schaltungen, 1991, Reports F1 and F4, ETH Zurich, Rel. Lab.;-et al., “Lifetime prediction of IGBT modules for traction applications”, Proc. Int. Rel. Phys. Symp., 2000, pp. 210–16.

    Google Scholar 

  5. Chick S.E., Mendel M.B., “An engineering basis for statistical lifetime models with application to tribology”, IEEE Trans. Rel., 45(1996)2, pp. 208–215.

    Article  Google Scholar 

  6. De Salvo B., et al, “A new physical model for NVM data-retention time to failure”, Proc. Int. Rel. Phys. Symp., 1999, pp. 19–23.

    Google Scholar 

  7. Degraeve R., et al, “On the field depend. of intrinsic and extrinsic time-dep. dielectric breakdown”, Proc. Int. Rel. Phys. Symp., 1996, pp. 44–54.

    Google Scholar 

  8. Dieci D. et al. “Breakdown and degradation issues and the choice of a safe load line for power HFET operation”, Proc. Int. Rel. Phys. Symp., 2000, pp. 258–263.

    Google Scholar 

  9. Fantini F., “Reliability and failure physics of integrated circuits”, in Dinemite II, (Vol. IV), Leuven, B: Interuniversitair Micro-Elektronica Centrum, 1986, pp. 1–30.

    Google Scholar 

  10. Fiegna C, Venturi F., Melanotte M., Sangiorgi E., Riccò B., “Simple and efficient modeling of EPROM writing”, IEEE Trans. El Dev., 38(1991)3, pp. 603–610.

    Article  Google Scholar 

  11. Fung R.C.-Y., Moll J.L., “Latch-up model for the parasitic p-n-p-n path in bulk CMOS”, IEEE Trans. El. Devices, 31(1984)1, pp. 113–120.

    Google Scholar 

  12. Ghidini G. et al, “Charge trapping mechanism under dynamic stress and their effect on failure time”, Proc. Int. Rel. Phys. Symp., 1999, pp. 88–92.

    Google Scholar 

  13. Gieser H.A. et al., “A CDM reproducible field degradation and its reliability aspects”, Proc. ESREF” 93, Bordeaux, 5pp., see also Qual. & Rel. Eng. International, 10(1994)4, pp. 341–345.

    Google Scholar 

  14. Glasstone S., Laidler K.J., Eyring H.E., The Theory of Rate Processes, 1941, McGraw-Hill, NY.

    Google Scholar 

  15. Herrmann M., Charge Loss Modeling of EPROMs with ONO Interpoly Dielectric, 1994, Ph.D. Thesis 10817, ETH Zurich;-and Schenk A., “Field and high-temperature dependence of the long-term charge loss in EPROMs”, J. Appl Phys., 77(1995)9, pp. 4522–4540.

    Google Scholar 

  16. Howes M.J., Morgan D.V. (Eds.), Reliability and Degradation-Semiconductor Devices and Circuits, 1981, Wiley, NY.

    Google Scholar 

  17. Hu C. (Ed.), Nonvolatile Semiconductor Memories: Technologies, Design, and Applications. 1991, IEEE Press, Piscataway NJ.

    Google Scholar 

  18. Hu C., et al., “A unified gate oxide rel. model”, Proc. Int. Rel. Phys. Symp., 1999, pp.47–51;-“Experimental evidence for V-driven breakdown mod. in ultra thin gate ox.”, Proc. Int. Rel Phys. Symp., 2000, pp. 7–15.

    Google Scholar 

  19. Jacob P., private communication 2005;-et al. “Electrostatic effects on semiconductor tools”, Microel. Rel., 44(2004), pp. 1787–92;-et al., “Electrostatic discharge directly to the chip surface, caused by autom. post-wafer processing”, Microel Rel, 45(2005), pp. 1174–80;-et al., “Manuf.-robotics-induced damages on semicond. dies”, Proc. 1PFA 2005, pp. 307–12;-et al., “FIB voltage contrast localization & analysis of contac-via-chains”, Proc. SPIE, Edinburgh 1999, pp. 273–79.

    Google Scholar 

  20. Kolesar S.C., “Principles of corrosion”, Proc. Int. Rel. Phys. Symp., 1974, pp. 155–167.

    Google Scholar 

  21. Lantz L., “Soft errors induced by α-particles”, IEEE Trans. Rel., 45 (1996)2, pp. 174–179.

    Article  Google Scholar 

  22. Lee J.H., et al, “Using erase self-detrapped effect to eliminate the flash cell program/erase cycling Vth window close”, Proc. Int. Rel. Phys. Symp., 1999, pp. 24–29.

    Google Scholar 

  23. Li E. et al, “Hot carrier effects in nMOSFETs in O.lµm CMOS technology”, Proc. Int. Rel. Phys. Symp., 1999, pp. 253–258;-et al. “Hot carrier induced degr. in deep submicron devices”, Proc. Int. Rel. Phys. Symp., 2000, pp. 103–107.

    Google Scholar 

  24. Mann J.E., “Failure analysis of passive devices”, Proc. Int. Rel. Phys. Symp., 1978, pp. 89–92.

    Google Scholar 

  25. Meneghesso G. et al., “Robustness of smart power protection structures evaluated by means of HBM and TLP test”, Proc. Int. Rel. Phys. Symp., 2000, pp. 270–275.

    Google Scholar 

  26. Miner M.A., “Cumulative damage in fatigue”, J. of Appl. Mech., 12(1945) Sept., pp. A159–A164.

    Google Scholar 

  27. Pecht M.G. et al., Guidebook for Managing Silicon Chip Reliability, 1999, CRC Press, NY.

    Google Scholar 

  28. Peck D.S., “Comprehensive model for humidity testing correlation”, Proc. Int. Rel. Phys. Symp., 1986, pp. 44–50;-and Thorpe W.R., “Highly accelerated stress (THB)-Test history, some problems and solutions”, Tutorial Notes at the Int. Rel. Phys. Symp., 1990, pp. 4.1–4.27.

    Google Scholar 

  29. RAC, FMD: Failure Mode/Mechanism Distribution, 1991; MFAT-1: Microelectronics Failure Analysis Tech., 1981; MFAT-2: GaAs Microcircuit Charact. & Failure Anal Techn, 1988.

    Google Scholar 

  30. Rajusman R., “Iddq testing for CMOS VLSI”, Proc. IEEE, 88(2000)4, pp. 544–566.

    Article  Google Scholar 

  31. Reiner J., “Latent gate oxide defects caused by CDM-ESD”, Proc. EOS/ESD Symp, Phoenix AZ, 1995, pp. 6.5.1–11, also in Jour. of Electrostatic, 38(1996) pp. 131–157; Latent Gate Oxide Damage Induced by Ultra fast Electrostatic Discharge, 1995, Ph.D. Thesis 11212, ETH Zurich.;-et al. “Impact of ESD-induced soft drain junction damage on CMOS product lifetime”, Microel. Reliability, 40(2000), pp. 1619–1628.

    Google Scholar 

  32. Schuegraf K.F., Hu C, “Reliability of thin SiO2”, Semicond. Sci. Technol., 9(1994), pp. 989–1004.

    Article  Google Scholar 

  33. Srinivasan G., “Modeling cosmic-ray-induced soft errors in IC’s”, IBM J. R&D, 40(1996)1, pp.77–90.

    Google Scholar 

  34. Tammaro M., “The role of copper in electromigration: The effect of a Cu-vacancy binding energy”, Proc. Int. Rel. Phys. Symp., 2000, pp. 317–323.

    Google Scholar 

  35. Troutmann R.R., “Latch-up in CMOS technol”, IEEE Circuits and Dev. Mag., (1987)5, pp. 15–21.

    Google Scholar 

Micro Connections and Packaging

  1. ASM, Packaging, Vol. 1, 1989, ASM Int., Material park OH.

    Google Scholar 

  2. Barker D.B., Dasgupta A., Pecht M., “Printed-wiring-board solder-joint fatigue-life calculation under thermal and vibration loading”, Proc. Ann. Rel. & Maint. Symp., 1991, pp. 451–459.

    Google Scholar 

  3. Ciappa M., Malberti P., “Reliability of laser-diode modules in temperature-uncontrolled env.”, Int. Rel. Phys. Symp., 1994, pp. 466–469;-and Scacco P., “Selective back-etch for silicon devices.”, Proc. ISTFA’95, Santa Clara CA, 1995, pp. 257–261.

    Google Scholar 

  4. Darveause R. and Banerji K., “Constitutive relations for tin-based solder joints.”, IEEE Trans. Compon., Pack., and Manuf. Technol., 15 (1992) 6, pp. 1013–1024.

    Article  Google Scholar 

  5. Engelmaier, W., “Environmental stress screening and use environments-their impact on solder joint and plated-through-hole reliability”, Proc. Int. Electronics Packaging Conf., Marlborough MA, 1990, pp. 388–393;-and Attarwala A.I., “Surface-mount attachment boards”, IEEE Trans., Compon., Pack., andManuf. technol., 12(1989)2, pp. 284–289.

    Google Scholar 

  6. ETH Zurich, Rel. Lab., Reports P3–P18: Qualification Tests on 7 Telecom. Equipment, 1989–91.

    Google Scholar 

  7. Fenech A., Hijagi A., Danto Y., “Determination of thermomechanical behavior of microel. packaging based on mictostructural analysis”, Proc. ESREF’ 94, Glasgow, 1994, pp. 405–410.

    Google Scholar 

  8. Frear D.R. (Ed.), The Mechanics of Solder Alloy Interconnections, 1994, Van Nostrand Reinh, NY.

    Google Scholar 

  9. Grossmann G., Zuv. von Weichlotstellen, 1993, Rep. L29, ETH Zurich, Rel. Lab.; Produktion und Prüfung von Testprints der SMT Fine Pitch, 1996, Rep. K12, ETH Zurich, Rel.Lab.; “Metallurgical consid. for acc. testing of el. equip.”, IEEE Trans. Comp., Pack. & Manuf. Technol., 20(1997)2, pp. 213–218; “The deformation of Sn62Pb36Ag2 and its impl. on the design of acc. tests for solder joints”, IEEE Trans. Comp., Pack.& Manuf. Technol., 22(1999)1, pp. 71–79;-et al, “Proper. of thin layers of Sn62Pb36Ag2”, Proc. 1995 IEMT Symp., pp. 502–507; “Metallurgical consid. for accel. testing of el. equip.”, Proc. 1996 IEMT Symp., pp. 298–304; “Lifetime ass. of soft sold. joints on the base of the behav. of Sn62Pb36Ag2”, Proc. 1997 IEMT Symp., pp. 256–263.

    Google Scholar 

  10. Heiduschke K., “The logarithmic strain space description”, Int. J. Solids Structures, 32 (1995), pp. 1047–1062 and 33(1996) pp. 747–760; Kontinuumsmech. und Finite Element Modellierung (Software package URMEL), 1996, Report K11, ETH Zurich, Rel. Lab.;-and Grossmann G., “Modeling fatigue cracks with spatial shape”, Proc. EuPac’ 94, Essen 1994, pp. 16–23.

    Article  MATH  Google Scholar 

  11. IEEE, Special issue on: Plastic Encapsulated Microcircuits, IEEE Trans. Rel., 42(1993)4.

    Google Scholar 

  12. Jacob P., Held M., Scacco P., “Reliability Testing and Analysis of IGBT Power Semiconductor Modules”, Proc ISTFA’94, Los Angeles CA 1994, pp. 319–325.

    Google Scholar 

  13. Lau J., Harkins G., Rice D., Kral J., “Thermal fatigue reliability of SMT packages and interconnections”, Proc. Int. Rel. Phys. Symp., 1987, pp. 250–259.

    Google Scholar 

  14. Lin R., Blackshear E.., Serisky P., “Moisture induced cracking in plastic encapsulated SMD during solder reflow process”, Proc. Int. Rel. Phys. Symp., 1988, pp. 83–89.

    Google Scholar 

  15. Pecht M., (Ed.) Handbook of Electronic Package Design, 1991, Dekker, N Y;-, Ramappan V., “Are components still the major problem?: A review of el. syst. & device field failure returns”, IEEE Trans. Comp., Pack. & Manuf. Technol, 15(1992)6, pp. 1160–64.

    Google Scholar 

  16. Philofsky E., “Design limits when using Au-Al bonds”, Proc. Int. Rel. Phys. Symp., 1986, pp.114–19.

    Google Scholar 

  17. Solomon H.D. et al. (Ed.), Low Cycle Fatigue, 1988, ASTM, Philadelphia.

    Google Scholar 

  18. Tullmin M., et al., “Corrosion of metallic materials”, IEEE Trans. Rel., 44 (1995)2, pp. 271–278.

    Article  Google Scholar 

  19. Weber L., Material-& Schädigungsmod. bei Pb-Zn-Ag-Lot, 1996, Rep. K10, ETH Zurich, Rel. Lab.; Creep-fatigue behaviour of eutectic Sn62Pb36Ag2 solder, 1997, Ph. D. Thesis 12251, ETH Zurich.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Qualification Tests for Components and Assemblies. In: Reliability Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49390-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49390-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49388-4

  • Online ISBN: 978-3-540-49390-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics