We study testing preorders for an asynchronous version of CCS called TACCS, where message emission is non blocking. We first give a labelled transition system semantics for this language, which includes both external and internal choice operators. By applying the standard definitions of may and must testing to this semantics we obtain two behavioural preorders based on asynchronous observations, \(\mathbin{\mathbin{\raisebox{-.65ex}{\raisebox{.97ex}{\(\sqsubset\)} \(\!\!\!\!\!\sim\)}}_{may}}\) and \(\mathbin{\mathbin{\raisebox{-.65ex}{\raisebox{.97ex}{\(\sqsubset\)} \(\!\!\!\!\!\sim\)}}_{must}}\). We present alternative behavioural characterisations of these preorders, which are subsequently used to obtain equational theories for the finite fragment of the language.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous π-calculus. Theoretical Computer Science 195, 291–324 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Computer Science, vol. 18 (1990)Google Scholar
  3. 3.
    Boreale, M., DeNicola, R., Pugliese, R.: Asynchronous observations of processes. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, p. 95. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Boreale, M., DeNicola, R., Pugliese, R.: Laws for asynchrony (1998) (Draft)Google Scholar
  5. 5.
    Boudol, G.: Asynchrony and the π-calculus. Research Report 1702, INRIA, Sophia-Antipolis (1992)Google Scholar
  6. 6.
    DeNicola, R., Hennessy, M.: Testing equivalences for provesses. Theoretical Computer Science 43, 83–133 (1984)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  8. 8.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  9. 9.
    Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Honda, K., Tokoro, M.: On asynchronous communication semantics. In: Tokoro, M., Wegner, P., Nierstrasz, O. (eds.) ECOOP-WS 1991. LNCS, vol. 612, Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 856. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  13. 13.
    Nestmann, U., Pierce, B.: Decoding choice encodings. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus. Technical Report CSCI 476, Computer Science Department, Indiana University (1997); To appear in Plotkin, G., Stirling, C., Tofte, M. (eds.): Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, CambridgeGoogle Scholar
  15. 15.
    Selinger, P.: First-order axioms for asynchrony. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ilaria Castellani
    • 1
  • Matthew Hennessy
    • 2
  1. 1.INRIASophia-Antipolis CedexFrance
  2. 2.COGSUniversity of SussexBrightonUK

Personalised recommendations