This paper is about the encoding of , the polyadic π-calculus, in , the monadic π-calculus. A type system for processes is introduced which captures the interaction regime underlying the encoding of processes respecting a sorting. A full-abstraction result is shown: two processes are typed barbed congruent iff their encodings are monadic-typed barbed congruent.


Type System Partial Function Graph Type Typing Rule Mobile Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Hon93]
    Honda, K.: Types for Dyadic Interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 509–523. Springer, Heidelberg (1993)Google Scholar
  2. [Kob97]
    Kobayashi, N.: A partially deadlock-free typed process calculus. In: Proc. 12th IEEE Symp. LICS, pp. 128–139 (1997)Google Scholar
  3. [KPT96]
    Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. In: Proc. 23rd ACM Symp. POPL, pp. 358–371 (1996)Google Scholar
  4. [LW95]
    Liu, X., Walker, D.: A Polymorphic Type System for the Polyadic π-calculus. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 103–116. Springer, Heidelberg (1995)Google Scholar
  5. [Mil92]
    Milner, R.: The Polyadic π-Calculus: a Tutorial. In: Bauer, F.L., Brauer, W., Schwichtenberg, H. (eds.) Logic and Algebra of Specification, pp. 203–246. Springer, Heidelberg (1992)Google Scholar
  6. [MPW92]
    Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I and II. Information and Computation 100(1), 1–77 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [NS97]
    Nestmann, U., Steffen, M.: Typing Confluence. In: Gnesi, S., Latella, D. (eds.) Proc. 2nd Int. ERCIM Workshop on Formal Methods in Industrial Critical Systems, pp. 77–101 (1997)Google Scholar
  8. [PS93]
    Pierce, B.C., Sangiorgi, D.: Typing and Subtyping for Mobile Processes. In: Proc. 8th IEEE Symp. LICS, pp. 376–385 (1993)Google Scholar
  9. [PS97]
    Pierce, B.C., Sangiorgi, D.: Behavioral Equivalence in the Polymorphic Pi-Calculus. In: Proc. 24th ACM Symp. POPL, pp. 242–255 (1997)Google Scholar
  10. [San97]
    Sangiorgi, D.: The name discipline of uniform receptiveness. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 303–313. Springer, Heidelberg (1997)Google Scholar
  11. [Tur96]
    Turner, D.N.: The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis, Comp. Sc. Dep., Edinburgh University, 1996. Report ECS-LFCS-96-345Google Scholar
  12. [VH93]
    Vasconcelos, V.T., Honda, K.: Principal typing schemes in a polyadic π-calculus. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715. Springer, Heidelberg (1993)Google Scholar
  13. [Yos96]
    Yoshida, N.: Graph Types for Monadic Mobile Processes. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Paola Quaglia
    • 1
  • David Walker
    • 2
  1. 1.BRICS – Basic Research in Computer ScienceCentre of the Danish National Research Foundation Aarhus UniversityDenmark
  2. 2.Oxford University Computing LaboratoryU.K.

Personalised recommendations