Advertisement

On Generating Strong Elimination Orderings of Strongly Chordal Graphs

  • N. Kalyana Rama Prasad
  • P. Sreenivasa Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1530)

Abstract

We present a conceptually simple algorithm to generate an ordering of the vertices of an undirected graph. The ordering generated turns out to be a strong elimination ordering if and only if the given graph is a strongly chordal graph. This algorithm makes use of maximum cardinality search and lexicographic breadth first search algorithms which are used to generate perfect elimination orderings of a chordal graph. Our algorithm takes O(k 2 n) time where k is the size of the largest minimal vertex separator and n denotes the number vertices in the graph. The algorithm provides a new insight into the structure of strongly chordal graphs and also gives rise to a new algorithm of the same time complexity for recognition of strongly chordal graphs.

Keywords

Edge Weight Chordal Graph Perfect Graph High Label Separator Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. Jl. of ACM 30, 479–513 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fagin, R.: Degrees of Acyclicity for hypergraph and relational database schemes. Jl. of ACM 30, 514–550 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Farber, M.: Characterization of Strongly Chordal Graphs. Discrete Math. 43, 173–189 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Farber, M., Anstee, R.P.: Characterization of Totally Balanced Matrices. Jl. of Algorithms 5, 215–230 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Farber, M.: Domination, Independent Domination and Duality in Strongly Chordal Graphs. Discrete Applied Mathematics 7, 115–130 (1884)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  7. 7.
    Lehel, J.: A characterization of totally balanced matrices. Discrete Mathematics 57, 59–65 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lubiw, A.: Double Lexical Ordering of matrices. SIAM Jl. of Computing 16(5), 854–879 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Peng, S.-L., Chang, M.-S.: A simple linear-time algorithm for the domatic prtition problem on strongly chordal graphs. Information processing Letters 43, 297–300 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Reed, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press, London (1972)Google Scholar
  11. 11.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic Aspects of Vertex Elimination on Graphs. SIAM Jl. of Computing 5, 266–283 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Spinrad, J.P.: Doubly Lexical Ordering of Dense 0-1 Matrices. Information Processing Letters 45, 229–235 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sreenivasa Kumar, P., Veni Madhavan, C.E.: 2-Separator Chordal Graphs. In: Proceedings of National Seminar on Theoretical Computer Science, Kharagpur, India, pp. 37–52 (1993)Google Scholar
  14. 14.
    Tarjan, R.E., Paige, R.: Three Partition Refinement Algorithm. SIAM Jl. Computing 16, 973–989 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Yannakakis, M., Tarjan, R.E.: Simple Linear-time Algorithms to Test Chordality of Graphs, Test acyclicity of Hypergraphs and Selectively Reduce Acyclic Hypergraphs. SIAM Jl. Computing 13(3), 565–579 (1984)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • N. Kalyana Rama Prasad
    • 1
  • P. Sreenivasa Kumar
    • 1
  1. 1.Department of Computer Science & EngineeringIndian Institute of TechnologyMadrasIndia

Personalised recommendations