Infinite Probabilistic and Nonprobabilistic Testing

  • K. Narayan Kumar
  • Rance Cleaveland
  • Scott A. Smolka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1530)


We introduce three new notions of infinite testing for probabilistic processes, namely, simple, Büchi and fair infinite testing. We carefully examine their distinguishing power and show that all three have the same power as finite tests. We also consider Büchi tests in the non-probabilistic setting and show that they have the same distinguishing power as finite tests. Finally, we show that finite probabilistic tests are stronger than nondeterministic fair tests.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BRV95.
    Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962. Springer, Heidelberg (1995)Google Scholar
  2. CDS+98.
    Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S., Zwarico, A.: Testing preorders for probabilistic processes. Information and Computation (1998) (to Appear)Google Scholar
  3. DNH83.
    De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1983)CrossRefGoogle Scholar
  4. Fel50.
    Feller, W.: Probability Theory and its Applications. John Wiley and Sons, Chichester (1950)zbMATHGoogle Scholar
  5. GSS95.
    van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)Google Scholar
  6. Hen88.
    Hennessy, M.C.B.: Algebraic Theory of Processes. MIT Press, Boston (1988)zbMATHGoogle Scholar
  7. JY95.
    Jonsson, B., Yi, W.: Compositional testing preorders for probabilistic processes. In: Proceedings of LICS 1995, pp. 431–441 (1995)Google Scholar
  8. NC95.
    Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944. Springer, Heidelberg (1995)Google Scholar
  9. Seg96.
    Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119. Springer, Heidelberg (1996)Google Scholar
  10. Shi80.
    Shiryayev, A.N.: Probability. Graduate Texts in Mathematics. Springer, Heidelberg (1980)Google Scholar
  11. WSS97.
    Wu, S.-H., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O automata. Theoretical Computer Science 176 (1997)Google Scholar
  12. YL92.
    Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Protocol Specification, Testing and Verification, vol. XII, pp. 47–61. North-Holland (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • K. Narayan Kumar
    • 1
  • Rance Cleaveland
    • 1
  • Scott A. Smolka
    • 1
  1. 1.Dept. Comput. Sci.SUNY at Stony BrookStony BrookUSA

Personalised recommendations