Descriptive Complexity [I98] is an approach to complexity that measures the richness of a language or sentence needed to describe a given property. There is a profound relationship between the traditional computational complexity of a problem and the descriptive complexity of the problem. In this setting, the finite object being worked on is treated as a logical structure. Thus descriptive complexity is part of finite model theory [EF95].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AI.
    Alechina, N., Immerman, N.: Efficient Fragments of Transitive Closure Logic. ManuscriptGoogle Scholar
  2. AH.
    Alur, R., Henzinger, T.: Computer-Aided Verification (to appear)Google Scholar
  3. BH.
    Bharadwaj, R., Heitmeyer, C.: Verifying SCR Requirements Specifications using State Exploration. In: Proceedings of First ACM SIGPLAN Workshop on Automatic Analysis of Software, Paris, France, January 14 (1997)Google Scholar
  4. CGP.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking (to appear)Google Scholar
  5. EF95.
    Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  6. E91.
    Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. M.I.T. Press, Cambridge (1991)Google Scholar
  7. I98.
    Immerman, N.: Descriptive Complexity. Springer-Verlag Graduate Texts in Computer Science, New York (1998)Google Scholar
  8. Imm87.
    Immerman, N.: Languages that capture complexity classes. SIAM Journal of Computing 16(4), 760–778 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  9. IV97.
    Immerman, N., Vardi, M.: Model Checking and Transitive Closure Logic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 291–302. Springer, Heidelberg (1997)Google Scholar
  10. Imm91.
    Immerman, N.: DSPACE[n k]=VAR[k+1]. In: Sixth IEEE Structure in Complexity Theory Symposium, pp. 334–340 (1991)Google Scholar
  11. K97.
    Kurshan, R.: Formal Verification in a Commercial Setting. In: Design Automation Conference (1997)Google Scholar
  12. Kur94.
    Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton University Press, Princeton (1994)Google Scholar
  13. McM93.
    McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)zbMATHGoogle Scholar
  14. PI97.
    Patnaik, S., Immerman, N.: Dyn-FO: A Parallel, Dynamic Complexity Class. J. Comput. Sys. Sci. 55(2), 199–209 (1997)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Neil Immerman
    • 1
  1. 1.Computer Science Dept.University of MassachusettsAmherstUSA

Personalised recommendations