Advertisement

Evaluating and Validating an Automated Registration System for Enhanced Reality Visualization in Surgery

  • W. E. L. Grimson
  • G. J. Ettinger
  • S. J. White
  • P. L. Gleason
  • T. Lozano-Pérez
  • W. M. WellsIII
  • R. Kikinis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 905)

Abstract

Frameless guidance systems are needed to help surgeons plan exact locations for incisions, define margins of tumors and precisely locate critical structures. We describe an automatic method for registering clinical data, such as segmented MRI or CT, with any view of the patient, demonstrated on neurosurgery examples. The method enables mixing live video of the patient with the segmented 3D MRI or CT model, supporting enhanced reality techniques for planning and guiding procedures, and for interactively, non-intrusively viewing internal structures. We detail a computational evaluation of the method’s performance, and clinical experiments using the system in actual neurosurgical cases.

Keywords

Coordinate Frame Laser Point Live Video Laser Data Virtual Reality Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besl, P., N. McKay, “A method for registration of 3D shapes” IEEE Trans. PAMI 14 (2): 239–256, 1992.CrossRefGoogle Scholar
  2. 2.
    Black, P. et al., “A New Virtual Reality Technique for Tumor Localization” Cong. Neurological Surgeons, 1993.Google Scholar
  3. 3.
    Champleboux, G. et al. “From accurate range imaging sensor calibration to accurate model-based 3D object localization”, CVPR, 1992, pp 83–89.Google Scholar
  4. 4.
    Cline, H. et al. “3D Segmentation of MR Images of the Head Using Probability and Connectivity.” JCAT 14 (6), 1990, pp 1037–1045.Google Scholar
  5. 5.
    Colchester, A.C.F., et al., “Craniotomy simulation and guidance using a stereo video based tracking system (Vislan)”, Proc. 3rd Conf. Visualiz. in Biomed. Comp., 1994.Google Scholar
  6. 6.
    Ettinger, G. et al. “Automatic Registration for Multiple Sclerosis Change Detection”, IEEE Workshop Biomed. Image Anal., Seattle, 1994, pp. 297–306.Google Scholar
  7. 7.
    Gerig, G. et al. “Medical Imaging and Computer Vision: an Integrated Approach for Diagnosis and Planning,” Proc. 11’th DAGM Symp., Hamburg, Springer, 1989, pp 425–443.Google Scholar
  8. 8.
    Gleason, L. et al. “A New Virtual Reality Technique for Non-Linkage Stereotactic Surgery” Society for Stereotactic & Functional Neurosurgery, Ixtapa, Mexico, 1993.Google Scholar
  9. 9.
    Grimson, E. et al. “Automated Registration for Enhanced Reality Visualization in Surgery”, 1st Int. Symp. Med. Robotics 6 Comp.-Assisted Surgery, Pittsburgh, Sept., 1994.Google Scholar
  10. 10.
    Gueziec, A., N. Ayache, “Smoothing and Matching of 3-D Space Curves”, Second ECCV, May 1992, pp 620–629.Google Scholar
  11. 11.
    Jiang, H., et al., “A New Approach to 3D Registration of Multimodality Medical Images by Surface Matching”, Visualiz. in Biomed. Comp., 1992, pp 196–213.Google Scholar
  12. 12.
    Pelizzari, C. et al. “Accurate three-dimensional registration of CT, PET, and/or MR images of the brain”, J. Computer Assisted Tomography 13 (1), 1989, pp 20–26.CrossRefGoogle Scholar
  13. 13.
    Press, W.H. et al. Numerical Recipes in C, The Art of Scientific Computing, 2nd Ed., Cambridge University Press, 1992.Google Scholar
  14. 14.
    Shweikard, A. et al., “Planning for image guided radiosurgery”, Proc. IEEE Conf. Rob. Autom., 1994.Google Scholar
  15. 15.
    Simon, D., et al., “Techniques for fast and accurate intrasurgical registration”, 1st Int. Symp. Med. Robotics Comp.-Assisted Surgery, Pittsburgh, Sept., 1994.Google Scholar
  16. 16.
    Sumanaweera, T.S. et al. “MR Susceptibility Misregistration Correctoin”, IEEE TMI 12, 1993, pp 251–259.Google Scholar
  17. 17.
    Szeliski, R., S. Lavallee, “Matching 3D Anatomical Surfaces with Non-Rigid Deformations using Octree-Splines”, IEEE Wk. Biomed. Im. Anal., June, 1994, pp. 144–153.Google Scholar
  18. 18.
    Thirion, J.P., “Extremal Points: Definition and Application to 3D Image Registration”, CVPR, June 1994, pp. 587–592.Google Scholar
  19. 19.
    Wells, W. M., Statistical Object Recognition, Ph.D. Thesis, MIT, 1993. (MIT AI Lab TR 1398 )Google Scholar
  20. 20.
    Wells, W. et al. “Video Registration using Fiducials for Surgical Enhanced Reality” Proc. 15th Conf. IEEE Engin. in Med. Biol. Soc., 1993, pp. 24–25.Google Scholar
  21. 21.
    Wells, W. et al. “Statistical Intensity Correction and Segmentation of Magnetic Resonance Image Data”, Proc. 3rd Conf. Visualiz. in Biomed. Comp., 1994.Google Scholar
  22. 22.
    Zhang, Z., “Iterative point matching for registration of free-form curves and surfaces”, IJCV 13 (2): 119–152, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • W. E. L. Grimson
    • 1
    • 2
    • 3
  • G. J. Ettinger
    • 1
    • 3
  • S. J. White
    • 3
  • P. L. Gleason
    • 2
  • T. Lozano-Pérez
    • 1
  • W. M. WellsIII
    • 1
    • 2
  • R. Kikinis
    • 2
  1. 1.AI Lab, MITCambridgeUSA
  2. 2.Dept. RadiologyBrigham & Womens Hospital, Harvard Med. SchoolBostonUSA
  3. 3.TASC, Inc.ReadingUSA

Personalised recommendations