Skip to main content

Quantum Tomography of Wigner Functions from Incomplete Data

  • Chapter
International Trends in Optics and Photonics

Part of the book series: Springer Series in OPTICAL SCIENCES ((SSOS,volume 74))

  • 632 Accesses

Summary

In this chapter we will study how the states of light can be reconstructed from the knowledge of a restricted set of mean values of system observables. We will show how the maximum entropy (MaxEnt) principle can be applied for a reconstruction of quantum states of light fields. The chapter is organized as follows. In Sect. 2 we briefly describe the main ideas of the MaxEnt principle. In Sect. 3 we set a scene for a description of the reconstruction of quantum states of light fields. In this section we briefly discuss the phase-space formalism which can be used for a description of quantum states of light. In Sect. 4 we introduce various observation levels suitable for a description of light fields and we present the reconstruction of Wigner functions of these fields prepared in nonclassical states. Finally, in Sect. 5 we present the results of the numerical reconstruction of quantum states of light from incomplete tomographic data. We compare two reconstruction schemes: reconstruction via the MaxEnt principle and reconstruction via direct sampling (i.e. the tomography reconstruction via pattern functions — see below in Sect. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peres, A. (1993) Quantum Theory: Concepts and Methods. Kluwer, Dordrecht

    MATH  Google Scholar 

  2. Ballentine, L.E. (1990) Quantum Mechanics. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  3. Wehrl, A. (1978) Rev Mod Phys 50: 221

    Article  MathSciNet  ADS  Google Scholar 

  4. Fick, E., Sauermann, G. (1990) The Quantum Statistics of Dynamic Processes. Springer-Verlag, Berlin

    Book  Google Scholar 

  5. Buzek, V., Adam, G., Drobnÿ, G. (1996) Ann Phys (NY) 245: 37 Buzek, V., Adam, G., Drobnÿ, G. (1996) Phys Rev A 54: 801

    Google Scholar 

  6. Jaynes, E.T. (1957) Phys Rev 108: 171;

    Article  MathSciNet  ADS  Google Scholar 

  7. Jaynes, E.T. (1957) Phys Rev 108: 620;

    Article  ADS  Google Scholar 

  8. Jaynes, E.T. (1963) Am J Phys 31: 66;

    Article  Google Scholar 

  9. Jaynes, E.T. (1963) Information theory and statistical mechanics. In: Ford, K.W. (Ed.) 1962 Brandeis Lectures, Vol. 3. Benjamin, p 181

    Google Scholar 

  10. Glauber, R.J. (1963) Phys Rev Lett 10: 84

    Article  MathSciNet  ADS  Google Scholar 

  11. Sudarshan, E.C.G. (1963) Phys Rev Lett 10: 277

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Wigner, E.P. (1932) Phys Rev 40: 749;

    Article  ADS  Google Scholar 

  13. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P. (1984) Phys Rep 106: 121

    Article  MathSciNet  ADS  Google Scholar 

  14. Cahill, K.E., Glauber, R.J. (1969) Phys Rev 177: 1857;

    Article  ADS  Google Scholar 

  15. Cahill, K.E., Glauber, R.J. (1969) Phys Rev 177: 1882

    Article  ADS  Google Scholar 

  16. Ekert, A.K., Knight, P.L. (1991) Phys Rev A 43: 3934

    Article  MathSciNet  ADS  Google Scholar 

  17. Vogel, K., Risken, H. (1989) Phys Rev A 40: 2847;

    Article  ADS  Google Scholar 

  18. Bertrand, J., Bertrand, P. (1987) Found Phys 17: 397

    Article  MathSciNet  ADS  Google Scholar 

  19. Freyberger, M., Vogel, K., Schleich, W.P. (1993) Phys Lett A 176: 41

    Article  ADS  Google Scholar 

  20. Vogel, W., Welsch, D.-G. (1995) Acta Phys Slov 45: 313

    Google Scholar 

  21. Leonhardt, U., Paul, H. (1994) Phys Lett A 193: 117

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Leonhardt, U., Paul, H. (1994) J Mod Opt 41: 1427

    Article  ADS  Google Scholar 

  23. Kühn, H., Welsch, D.-G., Vogel, W. (1994) J Mod Opt 41: 1607

    Article  ADS  MATH  Google Scholar 

  24. Leonhardt, U. (1993) Phys Rev A 48: 3265

    Article  ADS  Google Scholar 

  25. Leonhardt, U., Paul, H. (1993) Phys Rev A 48: 4598

    Article  ADS  Google Scholar 

  26. Paul, H., Leonhardt, U., D’Ariano, G.M. (1995) Acta Phys Slov 45: 261

    Google Scholar 

  27. D’Ariano, G.M., Machiavelo, C., Paris, M.G.A. (1994) Phys Rev A 50: 4298

    Article  ADS  Google Scholar 

  28. Leonhardt, U., Paul, H., D’Ariano, G.M. (1995) Phys Rev A 52: 4899

    Article  ADS  Google Scholar 

  29. Richter, T. (1996) Phys Lett A 211: 327

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Richter, T. (1996) Phys Rev A 53: 1197

    Article  ADS  Google Scholar 

  31. Leonhardt, U., Munroe, M., Kiss, T., Richter, T., Raymer, M.G. (1996) Opt Commun 127: 144

    Article  ADS  Google Scholar 

  32. D’Ariano, G.M., Leonhardt, U., Paul, H. (1995) Phys Rev A 52: R1801

    Article  ADS  Google Scholar 

  33. Buzek, V., Vidiella-Barranco, A., Knight, P.L. (1992) Phys Rev A 45: 6570

    Article  ADS  Google Scholar 

  34. Buzek, V., Knight, P.L. (1995) Quantum interference, superposition states of light and nonclassical effects. In: Wolf, E. (Ed.) Progress in Optics, Vol. 34. North Holland, Amsterdam, p 1

    Google Scholar 

  35. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A. (1993) Phys Rev Lett 70: 1244

    Article  ADS  Google Scholar 

  36. Beck, M., Smithey, D.T., Raymer, M.G. (1993) Phys Rev A 48: R890

    Article  ADS  Google Scholar 

  37. Raymer, M.G., Beck, M., McAlister, D.F. (1994) Phys Rev Lett 72: 1137

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Munroe, M., Boggavarapu, D., Anderson, M.E., Raymer, M.G. (1995) Phys Rev A 52: R924

    Article  ADS  Google Scholar 

  39. Leonhardt, U., Munroe, M. (1996) Phys Rev A 54: 3682;

    Article  ADS  Google Scholar 

  40. Wünsche, A. (1996) Phys Rev A 54: 5291

    Article  ADS  Google Scholar 

  41. Opatrnÿ T., Welsch, D.-G. (1997) Phys Rev A 55: 1462

    Article  ADS  Google Scholar 

  42. Tan, S.M. (1997) J Mod Opt 44: 2233 and references therein.

    Google Scholar 

  43. Buzek, V., Drobnÿ, G., Derka, R., Adam, G., Wiedeman, H. (1999) Chaos, Solitons and Fractals 10: 981

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bužek, V., Drobný, G., Wiedemann, H. (1999). Quantum Tomography of Wigner Functions from Incomplete Data. In: Asakura, T. (eds) International Trends in Optics and Photonics. Springer Series in OPTICAL SCIENCES, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48886-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48886-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14212-7

  • Online ISBN: 978-3-540-48886-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics