Modeling and LCAO Calculations of Point Defects in Crystals

Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 153)


The theory of perfect crystalline solids explains those bulk properties of crystals that do not depend on boundary effects and other defects of the structure. However, real solids do not demonstrate translational symmetry. Boundaries and other regions of disruption of translational symmetry called defects are always present. Many practical applications of solids are based on the use of the properties caused by defects. By varying the defect structure of solids it is possible to change their physical and chemical properties in such a way that the defective crystals find useful applications. As an example, we mention TiO2 crystal that has been successfully applied as a semiconductor photocatalyst with high oxidizing power and high resistance to photo- and chemical corrosion. However, the relatively large bandgap (3 eV) does not permit efficient absorption of visible light and hence prevents TiO2 from being used in largescale environmental applications. Chemical doping of TiO2 allows the bandgap to be reduced. The theoretical study of the doped TiO2 helps to solve the important problem: how to best manipulate the gap while maintaining the beneficial photocatalytic properties [677].


Point Defect Perfect Crystal Wannier Function Periodic Boundary Condition Primitive Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations