Theory of Optical Waveguides

  • Robert G. Hunsperger
Part of the Springer Series in Optical Sciences book series (SSOS, volume 33)


Chapter 2 has reviewed the key results of waveguide theory, particularly with respect to the various optical modes that can exist in the waveguide. A comparison has been made between the physical-optic approach and the ray-optic approach is describing light propagation in a waveguide. In this chapter, the electromagnetic wave theory of the physical-optic approach is developed in detail. Emphasis is placed on the two basic waveguide geometries that are used most often in optical integrated circuits, the planar waveguide and the rectangular waveguide.


Optical Waveguide Effective Index Planar Waveguide Waveguide Structure Rectangular Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    W. Hayt, Jr.: Engineering Electromagnetics, 4th ed. (McGraw-Hill, New York 1981) p. 151 and p. 317Google Scholar
  2. 3.2
    A. Yariv: Introduction to Optical Electronics, 2nd ed. (Holt, Rinehart and Winston, New York 1976) p. 364Google Scholar
  3. 3.3
    D. Hall, A. Yariv, E. Gannire: Opt. Commun. 1, 403 (1970)ADSCrossRefGoogle Scholar
  4. 3.4
    M. Barnoski: Introduction to Integrated Optics (Plenum, New York 1974) p. 61CrossRefGoogle Scholar
  5. 3.5
    D. Mergerian, E. Malarkey: Microwave J. 23, 37 (1980)Google Scholar
  6. 3.6
    H. Kressel, M. Ettenberg, J. Wittke, I. Ladany: “Laser Diodes and LEDs for Fiber Optical Communications” in Semiconductor Devices, 2nd ed., edited by H. Kressel, Top. Appl. Phys., Vol. 39 (Springer, Berlin, Heidelberg, New York 1982) pp. 23–25Google Scholar
  7. 3.7
    S. Somekh, E. Garmire, A. Yariv, H. Garvin, R.G. Hunsperger: Appl. Opt. 13, 327 (1974)ADSCrossRefGoogle Scholar
  8. 3.8
    J. Goell: Bell Syst. Techn. J. 48, 2133 (1969)Google Scholar
  9. 3.9
    W. Schlosser, H.G. Unger: In Advances in Microwaves, ed. by L. Young (Academic, New York 1966) pp. 319–387Google Scholar
  10. 3.10
    E.A.J. Marcatilli: Bell Syst. Techn. J. 48, 2071 (1969)Google Scholar
  11. 3.11
    H. Furuta, H. Noda, A. Ihaya: Appl. Opt. 13, 322 (1974)ADSCrossRefGoogle Scholar
  12. 3.12
    V. Ramaswamy: Bell Syst. Techn. J. 53, 697 (1974)Google Scholar
  13. 3.13
    H. Kogelnik: “Theory of Dielectric Waveguides”, in Integrated Optics, 2nd. ed., edited by T. Tamir, Top. Appl. Phys., Vol. 7 (Springer, Berlin, Heidelberg, New York 1979) Chap. 2Google Scholar
  14. 3.14
    J. Campbell, F. Blum, D. Shaw, K. Shaw, K. Lawley: Appl. Phys. Lett. 27, 202 (1975)ADSCrossRefGoogle Scholar
  15. 3.15
    F. Blum, D. Shaw, W. Holton: Appl. Phys. Lett. 25, 116 (1974)ADSCrossRefGoogle Scholar
  16. 3.16
    F. Reinhart, R. Logan, T. Lee: Appl. Phys. Lett. 24, 270 (1974)ADSCrossRefGoogle Scholar
  17. 3.17
    H.G. Unger: Planar Optical Waveguides and Fibers (University Press, Oxford 1978)Google Scholar
  18. 3.18
    H. Kogelnik: “Theory of Optical Waveguides”, in Guided Wave Optoelectronics, ed. by T. Tamir, Springer Ser. Electronics and Photonics., Vol. 26 (Springer, Berlin, Heidelberg, New York 1988)Google Scholar
  19. 3.19
    J.T. Chilwell, I.J. Hodgkinson: Thin-film matrix description of optical multilayer planar waveguides, J. Opt. Soc. Am. 72, 1821 (1982)ADSGoogle Scholar
  20. 3.20
    L.G. Ferreira, M. Pudensi: Waveguiding in a dielectric medium varying slowly in one transverse direction, J. Opt. Soc. Am. 71, 1377 (1981)ADSGoogle Scholar
  21. 3.21
    T. Tamir: Microwave modeling of periodic waveguides, IEEE Trans. MTT-29, 979 (1981)Google Scholar
  22. 3.22
    T. Tamir: Guided-wave methods for optical configurations, Appl. Phys. 25, 201 (1981)ADSCrossRefGoogle Scholar
  23. 3.23
    E.A. Kolosovsky, D.V. Petrov, A.V. Tsarev, I.B. Yakovkin: An exact method for analyzing light propagation in anisotropic inhomogeneous optical waveguides. Opt. Commun. 43, 21 (1982)ADSCrossRefGoogle Scholar
  24. 3.24
    K. Yasumoto, Y. Oishi: A new evaluation of the Goos-Hänchen shift and associated time delay, J. Appl. Phys. 54, 2170 (1983)ADSCrossRefGoogle Scholar
  25. 3.25
    F.P. Payne: A new theory of rectangular optical waveguides, Opt. Quant. Electron. 14, 525 (1982)ADSCrossRefGoogle Scholar
  26. 3.26
    H. Yajima: Coupled-mode analysis of anisotropic dielectric planar branching waveguides, IEEE J. LT-1, 273 (1983).Google Scholar
  27. 3.27
    S.A. Shakir, A.F. Turner: Method of poles for multilayer thin film waveguides, Appl. Phys. A29, 151 (1982)CrossRefGoogle Scholar
  28. 3.28
    W.H. Southwell: Ray tracing in gradient-index media, J. Opt. Soc. Am. 72, 909 (1982)ADSCrossRefGoogle Scholar
  29. 3.29
    J. Van Roey, J. VanderDonk, P.E. Lagasse: Beam-propagation method: analysis and assessment, J. Opt. Soc. Am. 71, 803 (1981)ADSCrossRefGoogle Scholar
  30. 3.30
    J. Nezval: WKB approximation for optical modes in a periodic planar waveguide, Opt. Commun. 42, 320 (1982)ADSCrossRefGoogle Scholar
  31. 3.31
    Ch. Pichot: Exact numerical solution for the diffused channel waveguide, Opt. Commun. 41, 169 (1982)ADSCrossRefGoogle Scholar
  32. 3.32
    V. Ramaswamy, R.K. Lagu: Numerical field solution for an arbitrary asymmetrical graded-index planar waveguide, IEEE J. LT-1, 408 (1983)Google Scholar
  33. 3.33
    Y. Li: Method of successive approximations for calculating the eigenvalues of optical thin-film waveguides, Appl. Opt. 20, 2595 (1981)ADSCrossRefGoogle Scholar
  34. 3.34
    J.P. Meunier, J. Pigeon, J.N. Massot: A numerical technique for the determination of propagation characteristics of inhomogeneous planar optical waveguides, Opt. Quant. Electron. 15, 77 (1983)ADSCrossRefGoogle Scholar
  35. 3.35
    M. Belanger, G.L. Yip: Mode conversion analysis in a single-mode planar taper optical waveguide, J. Opt. Soc. Am. 72, 1822 (1982)ADSGoogle Scholar
  36. 3.36
    E. Khular, A. Kumar, A. Sharma, I.C. Goyal, A.K. Ghatak: Modes in buried planar optical waveguides with graded-index profiles, Opt. Quant. Electron. 13, 109 (1981);ADSCrossRefGoogle Scholar
  37. 3.36a
    E.K. Sharma, A.K. Ghatak: Exact modal analysis for buried planar optical waveguides with asymmetric graded refractive index profile, Opt. Quant. Electron. 13, 429 (1981)CrossRefGoogle Scholar
  38. 3.37
    A. Hardy, E. Kapon, A. Katzir: Expression for the number of guided TE modes in periodic multilayered waveguides, J. Opt. Soc. Am. 71, 1283 (1981)ADSCrossRefGoogle Scholar
  39. 3.38
    L. Eyges, P. Wintersteiner: Modes in an array of dielectric waveguides, J. Opt. Soc. Am. 71, 1351 (1981);ADSGoogle Scholar
  40. 3.38a
    L. Eyges, P.D. Gianino: Modes of cladded guides of arbitrary cross-sectional shape, J. Opt. Soc. Am. 72, 1606 (1982)ADSCrossRefGoogle Scholar
  41. 3.39
    P.M. Rodhe: On radiation modes in the time-dependent coupled power theory for optical waveguides, Opt. Quant. Electron. 15, 71 (1983)ADSCrossRefGoogle Scholar
  42. 3.40
    L. McCaughan, E.E. Bergmann: Index distribution of optical waveguides from their mode profile, IEEE J. LT-1, 241 (1983)Google Scholar
  43. 3.41
    H. Kogelnik: Devices for lightwave communications, in Lasers and Applications, ed. by W.O.N. Guimaraes, C.-T. Lin, A. Mooradian, Springer Ser. Opt. Sci., Vol. 26 (Springer, Berlin, Heidelberg, New York 1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Robert G. Hunsperger
    • 1
  1. 1.Department of Electrical EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations