Scattering by particles on or near a plane surface

  • Adrian Doicu
  • Roman Schuh
  • Thomas Wriedt
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Computation of light scattering from particles deposited upon a surface is of great interest in the simulation, development and calibration of surface scanners for wafer inspection [1]. More recent applications include laser cleaning [2], scanning near-field optical microscopy (SNOM) [3] and plasmon resonances effects in surface-enhanced Raman spectroscopy (SERS) [4]. Several studies have addressed this scattering problem using different methods. Simplified theoretical models have been developed on the basis of Lorenz-Mie theory and Fresnel surface reflection [5, 6, 7, 8]. A coupled-dipole algorithm has been employed by Taubenblatt and Tran [9] and Nebeker et al. [10] using a three-dimensional array of dipoles to model a feature shape and the Sommerfeld integrals to describe the interaction between a dipole and a surface. The theoretical aspects of the coupled-dipole model has been fully outlined by R. Schmehl [11]. A model based on the discrete source method has been given by Eremin and Orlov [12,13], whereas the transmission conditions at the interface are satisfied analytically and the fields of discrete sources are derived by using the Green tensor for a plane surface. More details on computational methods and experimental results can be found in a book edited by Moreno and Gonzales [14].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Stover: Optical Scattering: Measurement and Analysis, 2nd edn (SPIE Press, Bellingham, WA 1995).Google Scholar
  2. 2.
    B. Luk’yanchuk: Laser Cleaning (World Scientific, River Edge, NJ 2002).Google Scholar
  3. 3.
    S. Kawata, M. Ohtsu, M. Irie: Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin Heidelberg New York 2001).Google Scholar
  4. 4.
    A. Campion, P. Kambhampati: Surface-enhanced Raman scattering. Chemical Society Reviews 27, 241 (1998).CrossRefGoogle Scholar
  5. 5.
    P. A. Bobbert, J. Vlieger: Light scattering by a sphere on a substrate. Physica 137, 209 (1986).CrossRefGoogle Scholar
  6. 6.
    G. Videen: Light scattering from a sphere on or near a surface. J. Opt. Soc. Am. A 8, 483 (1991).Google Scholar
  7. 7.
    G. Videen: Light scattering from a sphere behind a surface. J. Opt. Soc. Am. A 10, 110 (1993).Google Scholar
  8. 8.
    G. Videen Scattering from a small sphere near a surface. J. Opt. Soc. Am. A 10 118 1993Google Scholar
  9. 9.
    M. A. Taubenblatt, T. K. Tran: Calculation of light scattering from particles and structures on a surface by the coupled-dipole method. J. Opt. Soc. Am. A 10, 912 (1993).CrossRefGoogle Scholar
  10. 10.
    B. M. Nebeker, G. W. Starr, E. D. Hirleman: Light scattering from patterned surfaces and particles on surfaces. In Optical Characterization Techniques for high Performance Microelectronic Device Manufacturing II, ed. by J. K. Lowell, R. T. Chen, J. P. Mathur (Proc. SPIE 2638, 1995), pp. 274–284.Google Scholar
  11. 11.
    R. Schmehl: The coupled-dipole method for light scattering from particles on plane surfaces. Diplomarbeit, Universität Karlsruhe (TH), Karlsruhe 1994.Google Scholar
  12. 12.
    Y. Eremin, N. Orlov: Simulation of light scattering from a particle upon a wafer surface. Appl. Opt. 35, 6599 (1996).Google Scholar
  13. 13.
    Y. A. Eremin, N. V. Orlov: Analysis of light scattering by microparticles on the surface of a silicon wafer. Optics and Spectroscopy 82, 434 (1997).Google Scholar
  14. 14.
    F. Moreno, F. Gonzalez: Light Scattering from Micro structures (Springer, Berlin 2000).CrossRefGoogle Scholar
  15. 15.
    G. Kristensson, S. Ström: Scattering from buried inhomogeneities-a general three-dimensional formalism. J. Acoust. Soc. Am. 64, 917 (1978).CrossRefGoogle Scholar
  16. 16.
    R. H. Hackman, G. S. Sammelmann: Acoustic scattering in an homogeneous waveguide: Theory. J. Acoust. Soc. Am. 80, 1447 (1986).CrossRefGoogle Scholar
  17. 17.
    T. Wriedt, A. Doicu: Light scattering from a particle on or a near surface. Opt. Commun. 152, 376 (1998).CrossRefGoogle Scholar
  18. 18.
    R. C. Reddick, R. J. Warmack, T. L. Ferrell: New form of scanning optical microscopy. Phys. Rev. 39, 767 (1989).CrossRefGoogle Scholar
  19. 19.
    R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, T. L. Ferrell: Photon scanning tunneling microscopy. Rev. Sci. Instrum. 61, 3669 (1990).CrossRefGoogle Scholar
  20. 20.
    P. C. Chaumet, A. Rahmani, F. Fornel, J.-P. Dufour: Evanescent light scattering: The validity of the dipole approximation. Phys. Rev. 58, 2310 (1998).CrossRefGoogle Scholar
  21. 21.
    C. Liu, T. Kaiser, S. Lange, G. Schweiger: Structural resonances in a dielectric sphere illuminated by an evanescent wave. Opt. Commun. 117, 521 (1995).CrossRefGoogle Scholar
  22. 22.
    M. Quinten, A. Pack, R. Wannemacher: Scattering and extinction of evanescent waves by small particles. Appl. Phys. 68, 87 (1999).CrossRefGoogle Scholar
  23. 23.
    R. Wannemacher, A. Pack, M. Quinten: Resonant absorption and scattering in evanescent fields. Appl. Phys. 68, 225 (1999).CrossRefGoogle Scholar
  24. 24.
    D. Mackowski: Exact solution for the scattering and absorption properties of sphere clusters on a plane surface. J. Quant. Spec. Rad. Transf. 109, 770 (2007).CrossRefGoogle Scholar
  25. 25.
    D. C. Prieve: Measurement of colloidal forces with TIRM. Advances in Colloid and Interface Science 82, 93 (1999).CrossRefGoogle Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2008

Authors and Affiliations

  • Adrian Doicu
    • 1
  • Roman Schuh
    • 2
  • Thomas Wriedt
    • 3
  1. 1.Remote Sensing Technology InstituteWesslingGermany
  2. 2.Process EngineeringUniversity of BremenBremenGermany
  3. 3.Stiftung Institut für WerkstofftechnikBremenGermany

Personalised recommendations