Skip to main content

Light scattering by particles with boundary symmetries

  • Chapter
Light Scattering Reviews 3

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Symmetries are frequently exploited in physics to simplify the mathematical description of nature. For instance, the idealised concept of a point source in Newton’s law of gravity or in Coulomb’s law yields a simple, radially symmetric force field ∼ 1/r2. The isotropy of space in such a force field entails a dynamic symmetry, namely conservation of angular momentum. The point-source concept constitutes a drastic simplification compared to the source distributions encountered in nature. In spite of that, it has been highly successful for three reasons. First, the anisotropic field from a general source distribution can be represented by superposition of the fields of individual point sources, which can be expressed as a multipole expansion. Second, viewed from a large distance from the source distribution, the field is approximated with sufficient accuracy by the field of a point source, since the higher-order multipole terms can be neglected and only the monopole term survives. Third, nearly-spherical source distributions, for which the higher-order multipole terms are small even in the near field, are frequently encountered in nature, e.g. in planetary sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West. Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res., 102:16,831–16,847, 1997.

    Google Scholar 

  2. F. M. Kahnert, J. J. Stamnes, and K. Stamnes. Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes? J. Opt. Soc. Am. A, 19:521–531, 2002.

    Article  Google Scholar 

  3. F. M. Kahnert, J. J. Stamnes, and K. Stamnes. Using simple particle shapes to model the Stokes scattering matrix of ensembles of wavelength-sized particles with complex shapes: possibilities and limitations. J. Quant. Spectrosc. Radiat. Transfer, 74:167–182, 2002.

    Article  CAS  Google Scholar 

  4. T. Nousiainen and K. Vermeulen. Comparison of measured single-scattering matrix of feldspar particles with T-matrix simulations using spheroids. J. Quant. Spectrosc. Radiat. Transfer, 79-80:1031–1042, 2003.

    Article  CAS  Google Scholar 

  5. F. M. Kahnert. Reproducing the optical properties of fine desert dust aerosols using ensembles of simple model particles. J. Quant. Spectrosc. Radiat. Transfer, 85:231–249, 2004.

    Article  CAS  Google Scholar 

  6. T. Nousiainen, M. Kahnert, and B. Veihelmann. Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids. J. Quant. Spectrosc. Radiat. Transfer, 101:471–487, 2006.

    Article  CAS  Google Scholar 

  7. G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 25:377–445, 1908.

    Google Scholar 

  8. S. Asano and G. Yamamoto. Light scattering by a spheroidal particle. Appl. Opt., 14:29–49, 1975.

    Google Scholar 

  9. M. I. Mishchenko. Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. A., 8:871–882, 1991.

    CAS  Google Scholar 

  10. F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni. Use of group theory for the description of electromagnetic scattering from molecular systems. J. Opt. Soc. Am. A, 1:183–191, 1984.

    Article  Google Scholar 

  11. R. P. Tarasov. Harmonic analysis on finite groups and methods for the numerical solution of boundary equations in boundary-value problems with non-Abelian symmetry group. Comp. Maths. Math. Phys., 32:1367–1369, 1992.

    Google Scholar 

  12. E. V. Zakharov, S. I. Safronov, and R. P. Tarasov. Finite-order Abelian groups in the numerical analysis of linear boundary-value problems of potential theory. Comput. Maths. Math. Phys., 32:34–50, 1992.

    Google Scholar 

  13. Ye. V. Zakharov, S. I. Safronov, and R. P. Tarasov. Reduction to a boundary-value problem with finite non-Abelian symmetry group using the interlacing operator. Comput. Maths. Math. Phys., 35:1275–1282, 1995.

    Google Scholar 

  14. E. V. Zakharov, S. I. Safronov, and R. P. Tarasov. Finite group algebras in iterationsl methods of solving boundary-value problems of potential theory. Comput. Maths. Math. Phys., 33:907–917, 1993.

    Google Scholar 

  15. R. P. Tarasov. Numerical solution of convolution-type equations on finite non-commutative groups. Comp. Maths. Math. Phys., 33:1589–1597, 1993.

    Google Scholar 

  16. I. A. Zagorodnov and R. P. Tarasov. The problem of scattering from bodies with a noncommutative finite group of symmetries and its numerical solution. Comput. Maths. Math. Phys., 37:1206–1222, 1997.

    Google Scholar 

  17. I. A. Zagorodnov and R. P. Tarasov. Finite groups in numerical solution of electromagnetic scattering problems on non-spherical particles. In Light scattering by nonspherical particles: Halifax contributions, pages 99–102. Army Research Laboratory, Adelphi, MD, 2000.

    Google Scholar 

  18. I. A. Zagorodnov and R. P. Tarasov. Numerical solution of the problems of scattering by platonic bodies in the classes of functions invariant under symmetry transformations. Comput. Maths. Math. Phys., 38:1247–1259, 1998.

    Google Scholar 

  19. I. A. Zagorodnov and R. P. Tarasov. Numerical solution of the problems of scattering by platonic bodies in the classes of functions invariant under symmetry transformations. Comput. Maths. Math. Phys., 40:1456–1478, 2000.

    Google Scholar 

  20. T. Weiland and I. Zagorodnov. Maxwell’s equations for structures with symmetries. J. Comput. Phys., 180:297–312, 2002.

    Article  CAS  Google Scholar 

  21. F. M. Schulz, K. Stamnes, and J. J. Stamnes. Point group symmetries in electromagnetic scattering. J. Opt. Soc. Am. A, 16:853–865, 1999.

    Article  Google Scholar 

  22. F. M. Kahnert, J. J. Stamnes, and K. Stamnes. Application of the extended boundary condition method to homogeneous particles with point group symmetries. Appl. Opt., 40:3110–3123, 2001.

    Article  CAS  Google Scholar 

  23. S. Havemann and A. J. Baran. Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders. J. Quant. Spectrosc. Radiat. Transfer, 70:139–158, 2001.

    Article  CAS  Google Scholar 

  24. P. C. Waterman. Matrix formulation of electromagnetic scattering. Proc. IEEE, 53:805–812, 1965.

    Article  Google Scholar 

  25. F. M. Schulz, K. Stamnes, and J. J. Stamnes. Scattering of electromagnetic waves by spheroidal particles: A novel approach exploiting the T-matrix computed in spheroidal coordinates. Appl. Opt., 37:7875–7896, 1998.

    Article  CAS  Google Scholar 

  26. T. A. Niemen, H. Rubinsztein-Dunlop, and N. R. Heckenberg. Calculation of the T-matrix: general considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat Transfer, 79-80:1019–1029, 2003.

    Article  CAS  Google Scholar 

  27. D. W. Mackowski. Discrete dipole moment method for calculation of the T matrix for nonspherical particles. J. Opt. Soc. Am. A, 19:881–893, 2002.

    Article  Google Scholar 

  28. D. W. Mackowski and M. I. Mishchenko. Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A, 13:2266–2278, 1996.

    Google Scholar 

  29. M. Kahnert. Irreducible representations of finite groups in the T matrix formulation of the electromagnetic scattering problem. J. Opt. Soc. Am. A, 22:1187–1199, 2005.

    Article  Google Scholar 

  30. T. Rother, M. Kahnert, A. Doicu, and J. Wauer. Surface Green’s function of the Helmholtz equation in spherical coordinates. In J. A. Kong, editor, Progress in electromagnetic research (PIER), volume 38, pages 47–95. EMW Publishing, Cambridge, MA, 2002.

    Google Scholar 

  31. M. Kahnert. Boundary symmetries in linear differential and integral equation problems applied to the self-consistent Green’s function formalism of acoustic and electromagnetic scattering. Opt. Commun., 265:383–393, 2006.

    Article  CAS  Google Scholar 

  32. T. Rother. Self-consistent Green’s function formalism for acoustic and light scattering, Part 1: Scalar notation. Opt. Commun., 251:254–269, 2005.

    Article  CAS  Google Scholar 

  33. T. Rother. Self-consistent Green’s function formalism for acoustic and light scattering, Part 2: Dyadic notation. Opt. Commun., 251:270–285, 2005.

    Article  CAS  Google Scholar 

  34. T. Rother. Self-consistent Green’s function formalism for acoustic and light scattering, Part 3: Unitarity and symmetry. Opt. Commun., 266:380–389, 2006.

    Article  CAS  Google Scholar 

  35. T. Rother. Scalar Green’s function for penetrable or dielectric scatterers. Opt. Commun., 274:15–22, 2007.

    Article  CAS  Google Scholar 

  36. P. M. Morse and H. Feshbach. Methods of theoretical physics. McGraw-Hill, New York, 1953.

    Google Scholar 

  37. L. Tsang, J. A. Kong, and R. T. Shin. Radiative transfer theory for active remote sensing of a layer of nonspherical particles. Radio Sci., 19:629–642, 1984.

    Article  Google Scholar 

  38. A. Sommerfeld. Partial differential equations. Academic Press, New York, 1949.

    Google Scholar 

  39. D. M. Bishop. Group theory and chemistry. Dover Publications, Mineola, 1993.

    Google Scholar 

  40. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. Quantum theory of angular momentum. World Scientific, Singapore, 1988.

    Google Scholar 

  41. G. Baym. Lectures on quantum mechanics. Addison-Wesley Publishing, Reading, 1993.

    Google Scholar 

  42. M. Abramowitz and I. A. Stegun. Handbook of mathematical functions. Dover Publications, New York, 1972.

    Google Scholar 

  43. M. Hamermesh. Group theory and its application to physical problems. Dover Publications, New York, 1989.

    Google Scholar 

  44. T. Inui, Y. Tanabe, and Y. Onodera. Group theory and its applications in physics. Springer, Berlin, 1996.

    Google Scholar 

  45. J. D. Dixon. High speed computation of group characters. Numerische Mathematik, 10:446–450, 1965.

    Article  Google Scholar 

  46. J. J. Cannon. Computers in group theory: a survey. Commun. ACM, 12:3–11, 1969.

    Article  Google Scholar 

  47. D. C. Harris and M. D. Bertolucci. Symmetry and spectroscopy. Oxford University Press, New York, 1978.

    Google Scholar 

  48. M. I. Mishchenko and L. D. Travis. T-matrix computations of light scattering by large spheroidal particles. Opt. Commun., 109:16–21, 1994.

    Article  Google Scholar 

  49. S. Havemann and A. J. Baran. Calculation of the phase matrix elements of elongated hexagonal ice columns using the T-matrix method. In T. Wriedt, editor, Electromagnetic and light scattering-Theory and applications VII, pages 107–110. Universität Bremen, Bremen, 2003.

    Google Scholar 

  50. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55:535–575, 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Kahnert, M. (2008). Light scattering by particles with boundary symmetries. In: Kokhanovsky, A.A. (eds) Light Scattering Reviews 3. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48546-9_3

Download citation

Publish with us

Policies and ethics