Skip to main content

An Interaction-Dependent Model for Transcription Factor Binding

  • Conference paper
Systems Biology and Regulatory Genomics (RSB 2005, RRG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4023))

Included in the following conference series:

Abstract

Transcriptional regulation is accomplished by several transcription factor proteins that bind to specific DNA elements in the relative vicinity of the gene, and interact with each other and with Polymerase enzyme. Thus the determination of transcription factor-DNA binding is an important step toward understanding transcriptional regulation. An effective way to experimentally determine the genomic regions bound by a transcription factor is by a ChIP-on-chip assay. Then, given the putative genomic regions, computational motif finding algorithms are applied to estimate the DNA binding motif or positional weight matrix for the TF. The a priori expectation is that the presence or absence of the estimated motif in a promoter should be a good indicator of the binding of the TF to that promoter. This association between the presence of the transcription factor motif and its binding is however weak in a majority of cases where the whole genome ChIP experiments have been performed. One possible reason for this is that the DNA binding of a particular transcription factor depends not only on its own motif, but also on synergistic or antagonistic action of neighboring motifs for other transcription factors. We believe that modeling this interaction-dependent binding with linear regression can better explain the observed binding data. We assess this hypothesis based on the whole genome ChIP-on-chip data for Yeast. The derived interactions are largely consistent with previous results that combine ChIP-on-chip data with expression data. We additionally apply our method to determine interacting partners for CREB and validate our findings based on published experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ptashne, M.: A genetic switch, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)

    Google Scholar 

  2. Kadonaga, J.T.: Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004)

    Article  Google Scholar 

  3. Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990)

    Article  Google Scholar 

  4. Guille, M.J., Kneale, G.G.: Methods for the analysis of DNA-protein interactions. Mol. Biotechnol. 8, 35–52 (1997)

    Article  Google Scholar 

  5. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)

    Article  Google Scholar 

  6. Horak, C.E., Snyder, M.: ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol. 350, 469–483 (2002)

    Article  Google Scholar 

  7. Bolouri, H., Davidson, E.H.: Modeling DNA sequence-based cis-regulatory gene networks. Dev. Biol. 246, 2–13 (2002)

    Article  Google Scholar 

  8. Thompson, W., Palumbo, M.J., Wasserman, W.W., Liu, J.S., Lawrence, C.E.: Decoding human regulatory circuits. Genome Res. 14, 1967–1974 (2004)

    Article  Google Scholar 

  9. Lee, T.I., et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002)

    Article  Google Scholar 

  10. Lomvardas, S., Thanos, D.: Nucleosome sliding via TBP DNA binding in vivo. Cell 106, 685–696 (2001)

    Article  Google Scholar 

  11. Hochschild, A., Ptashne, M.: Cooperative binding of lambda repressors to sites separated by integral turns of the DNA helix. Cell 44, 681–687 (1986)

    Article  Google Scholar 

  12. Euskirchen, G., et al.: CREB binds to multiple loci on human chromosome 22. Mol. Cell Biol. 24, 3804–3814 (2004)

    Article  Google Scholar 

  13. Bussemaker, H.J., Li, H., Siggia, E.D.: Regulatory element detection using correlation with expression. Nat. Genet. 27, 167–171 (2001)

    Article  Google Scholar 

  14. Banerjee, N., Zhang, M.Q.: Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res. 31, 7024–7031 (2003)

    Article  Google Scholar 

  15. Harbison, C.T., et al.: Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  Google Scholar 

  16. Pilpel, Y., Sudarsanam, P., Church, G.M.: Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet. 29, 153–159 (2001)

    Article  Google Scholar 

  17. Impey, S., et al.: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054 (2004)

    Google Scholar 

  18. Conkright, M.D., et al.: Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell. 11, 1101–1108 (2003)

    Article  Google Scholar 

  19. Valineva, T., Yang, J., Palovuori, R., Silvennoinen, O.: The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. J. Biol. Chem. 280, 14989–14996 (2005)

    Article  Google Scholar 

  20. Imai, E., Miner, J.N., Mitchell, J.A., Yamamoto, K.R., Granner, D.K.: Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J. Biol. Chem. 268, 5353–5356 (1993)

    Google Scholar 

  21. Blobel, G.A., Nakajima, T., Eckner, R., Montminy, M., Orkin, S.H.: CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl. Acad. Sci. U S A 95, 2061–2066 (1998)

    Article  Google Scholar 

  22. Grossman, S.R.: p300/CBP/p53 interaction and regulation of the p53 response. Eur. J. Biochem. 268, 2773–2778 (2001)

    Article  Google Scholar 

  23. Raychowdhury, R., et al.: Interaction of early growth response protein 1 (Egr-1), specificity protein 1 (Sp1), and cyclic adenosine 3’5’-monophosphate response element binding protein (CREB) at a proximal response element is critical for gastrin-dependent activation of the chromogranin A promoter. Mol. Endocrinol. 16, 2802–2818 (2002)

    Article  Google Scholar 

  24. Kobayashi, A., Numayama-Tsuruta, K., Sogawa, K., Fujii-Kuriyama, Y.: CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). J. Biochem. (Tokyo) 122, 703–710 (1997)

    Google Scholar 

  25. Oelgeschlager, M., Janknecht, R., Krieg, J., Schreek, S., Luscher, B.: Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. Embo. J. 15, 2771–2780 (1996)

    Google Scholar 

  26. Pouponnot, C., Jayaraman, L., Massague, J.: Physical and functional interaction of SMADs and p300/CBP. J. Biol. Chem. 273, 22865–22868 (1998)

    Article  Google Scholar 

  27. Love, T.M., et al.: Activation of CREB/ATF sites by polyomavirus large T antigen. J. Virol. 79, 4180–4190 (2005)

    Article  Google Scholar 

  28. Huang, H., et al.: MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J. Biol. Chem. 280, 10119–10127 (2005)

    Article  Google Scholar 

  29. Smith, A.D., Sumazin, P., Das, D., Zhang, M.Q.: Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics 21(Suppl. 1), i403–i412 (2005)

    Article  Google Scholar 

  30. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 85, 289–300 (1995)

    MathSciNet  Google Scholar 

  31. Hannenhalli, S., Levy, S.: Predicting transcription factor synergism. Nucleic Acids Res. 30, 4278–4284 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eleazar Eskin Trey Ideker Ben Raphael Christopher Workman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wang, LS., Jensen, S.T., Hannenhalli, S. (2007). An Interaction-Dependent Model for Transcription Factor Binding. In: Eskin, E., Ideker, T., Raphael, B., Workman, C. (eds) Systems Biology and Regulatory Genomics. RSB RRG 2005 2005. Lecture Notes in Computer Science(), vol 4023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48540-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48540-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48293-2

  • Online ISBN: 978-3-540-48540-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics