Skip to main content

Leydig Cell Function and Its Regulation

  • Chapter
The Genetic Basis of Male Infertility

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 28))

Abstract

The Leydig cell is the source of the male sex steroids, or androgens, which are essential for development and maintenance of the male phenotype, the male reproductive tract, and spermatogenesis. Disorders of androgen production or action, although relatively rare, have a profound impact upon development and fertility. In recent years, it has become evident that these steroids also impinge upon the function of other organ systems. Consequently, failure of Leydig cell function can have implications not only for reproductive health, but also for many aspects of general health. Beyond its traditional role as the primary source of androgens, Leydig cells produce other steroids and many non-steroidal factors. Increasingly, it is recognized that these other products play important roles in male reproduction, and have been implicated in vascular and immunological control within the environment of the testis. The non-androgenic functions of the Leydig cell have received comparatively little attention in the past, but are likely to excite far more interest as our understanding of the cellular and molecular environment of the testis develops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abayasekara DR, Band AM, Cooke BA (1990) Evidence for the involvement of phospholipase A2 in the regulation of luteinizing hormone-stimulated steroidogenesis in rat testis Leydig cells. Mol Cell Endocrinol 70: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Adamopoulos DA, Lawrence DM, Vassilopoulos P, Contoyiannis PA, Swyer GIM (1978) Pituitary-testicular interrelationships in mumps orchitis and other viral infections. Br Med J 1: 1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Adashi EY, Hseuh AJW (1981) Autoregulation of androgen production in a primary culture of rat testicular cells. Nature 293: 737–738

    Article  PubMed  CAS  Google Scholar 

  • Agular BM, Vinggaard AM, Vind C (1992) Regulation by dexamethasone of the 3I3-hydroxysteroid dehydrogenase activity in adult rat Leydig cells. J Steroid Biochem Mol Biol 43: 565–571

    Article  PubMed  CAS  Google Scholar 

  • Aiman J, Griffin JE (1982) The frequency of androgen receptor deficiency in infertile men. J Clin Endocrinol Metab 54: 725–732

    Article  PubMed  CAS  Google Scholar 

  • Aiman J, Brenner PF, MacDonald PC (1980) Androgen and estrogen production in elderly men with gynecomastia and testicular atrophy after mumps orchitis. J Clin Endocrinol Metab 50: 380–386

    Article  PubMed  CAS  Google Scholar 

  • Akin JW, Behzadian A, Tho SPT, McDonough PG (1991) Evidence for a partial deletion in the androgen receptor in a phenotypic male with azoospermia. Am J Obstet Gynecol 165: 1891–1894

    PubMed  CAS  Google Scholar 

  • Almahbobi G, Williams LJ, Han X-G, Hall PF (1993) Binding of lipid droplets and mitochondria to intermediate filaments in rat Leydig cells. J Reprod Fertil 98: 209–217

    Article  PubMed  CAS  Google Scholar 

  • Amat P, Paniagua R, Nistal M, Martin A (1986) Mitosis in adult human Leydig cells. Cell Tissue Res 243: 219–221

    Article  PubMed  CAS  Google Scholar 

  • Anakwe OO, Moger WH (1986) Catecholamine stimulation of androgen production by rat Leydig cells. Interaction with luteinizing hormone and luteinizing hormone-releasing hormone. Biol Reprod 35: 806–814

    Article  PubMed  CAS  Google Scholar 

  • Aoki A, Fawcett DW (1978) Is there a local feedback from the seminiferous tubules affecting activity of the Leydig cells? Biol Reprod 19: 144–158

    Article  PubMed  CAS  Google Scholar 

  • Ascoli M, Euffa J, Segaloff DL (1987) Epidermal growth factor activates steroid biosynthesis in cultured Leydig tumor cells without affecting the levels of cAMP and potentiates the activation of steroid biosynthesis by choriogonadotropin and cAMP. J Biol Chem 262: 9196–9203

    PubMed  CAS  Google Scholar 

  • Ascoli M, Pignataro OP, Segaloff DL (1989) The inositol phosphate/diacylglycerol pathway in MA-10 Leydig tumor cells. J Biol Chem 264: 6674–6681

    PubMed  CAS  Google Scholar 

  • Avallet O, Vigier M, Perrard-Sapori MH, Saez JM (1987) Transforming growth factor ß inhibits Leydig cell functions. Biochem Biophys Res Commun 146: 575–581

    Article  PubMed  CAS  Google Scholar 

  • Bahk JY, Hyun JS, Chung SH, Lee H, Kim MO, Lee BH, Choi WS (1995) Stage-specific identification of the expression of GnRH mRNA and localization of the GnRH receptor in mature rat and adult human testis. J Urol 154: 1958–1961

    Article  PubMed  CAS  Google Scholar 

  • Bambino TH, Hseuh AJW (1981) Direct inhibitory effects of glucocorticoids upon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro. Endocrinology 108: 2142–2148

    Article  PubMed  CAS  Google Scholar 

  • Bardin CW, Catterall JF (1981) Testosterone, a major determinant of extragenital sexual dimorphism. Science 211: 1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Bedrak E, Samuels LT (1969) Steroid biosynthesis by the equine testis. Endocrinology 85: 1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E (1978) Hypophysial responses to continuous and intermittent delivery of hypotha-lamic gonadotropin-releasing hormone. Science 202: 631–633

    Article  PubMed  CAS  Google Scholar 

  • Benahmed M, Morera AM, Chauvin MA (1986) Evidence for a Sertoli cell, FSH-suppressible inhibiting factor(s) of testicular steroidogenic activity. Biochem Biophys Res Commun 139: 169–178

    Article  PubMed  CAS  Google Scholar 

  • Benton L, Shan L-X, Hardy MP (1995) Differentiation of adult Leydig cells. J Steroid Biochem Mol Biol 53: 61–68

    Article  PubMed  CAS  Google Scholar 

  • Bergh A, Damber J-E (1993) Vascular controls in testicular physiology. In: de Kretser DM (ed) Molecular biology of the male reproductive tract. Academic Press, New York, pp 439–468

    Google Scholar 

  • Boockfor FR, Wang D, Lin T, Nagpal ML, Spangelo BL (1994) Interleukin-6 secretion from rat Leydig cells in culture. Endocrinology 134: 2150–2155

    Article  PubMed  CAS  Google Scholar 

  • Bouchard P, Wright F, Portois MC, Couzinet B, Schaison G, Mowszowicz I (1986) Androgen insensitivity in oligospermic men: a reappraisal. J Clin Endocrinol Metab 63: 1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Boujrad N, Hudson JR, Papadopoulos V (1993) Inhibition of hormone-stimulated steroidogenesis in cultured Leydig tumor cells by a cholesterol-linked phosphorothioate oligodeoxynucleotide antisense to diazepam-binding inhibitor. Proc Natl Acad Sci USA 90: 5728–5731

    Article  PubMed  CAS  Google Scholar 

  • Boujrad N, Ogwuegbu SO, Gamier M, Lee C-H, Martin BM, Papadopoulos V (1995) Identification of a stimulator of steroid hormone synthesis isolated from testis. Science 268: 1609–1612

    Article  PubMed  CAS  Google Scholar 

  • Bourne GA, Regiani S, Payne AH, Marshall JC (1980) Testicular GnRH receptors — characterization and localization on interstitial tissue. J Clin Endocrinol Metab 51: 407–409

    Article  PubMed  CAS  Google Scholar 

  • Boyar RM, Rosenfeld RS, Kapen S, Finkelstein JW, Roffwarg HP, Weitzman ED, Hellman L (1974) Human puberty. Simultaneous augmented secretion of luteinizing hormone and testosterone during sleep. J Clin Invest 54: 609–618

    Article  PubMed  CAS  Google Scholar 

  • Bremner WJ, Millar MR, Sharpe RM, Saunders PT (1994) Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology 135: 1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Brosh N, Sternberg D, Honigwachs-Sha’anani J, Lee BC, Shav-Tal Y, Tzehoval E, Shulman LM, Toledo J, Hachman Y, Carmi P, Wen J, Sasse J, Horn F, Burstein Y, Zipori D (1995) The plasmacytoma growth inhibitor restrictin-P is an antagonist of interleukin 6 and interleukin 11. Identification as a stroma-derived activin A. J Biol Chem 270: 29594–29600

    Article  PubMed  CAS  Google Scholar 

  • Brown AS, Hall PF, Shoyab M, Papadopoulos V (1992) Endozepine/diazepam binding inhibitor in adrenocortical and Leydig cell lines: absence of hormonal regulation. Mol Cell Endocrinol 83: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Bruot BC, Clemens JW (1992) Regulation of testosterone production in the adjuvant-induced arthritic rat. J Androl 13: 87–92

    PubMed  CAS  Google Scholar 

  • Burger HG, Baker HWG (1984) Therapeutic considerations and results of gonadotropin treatment in male hypogonadotropic hypogonadism. Ann N Y Acad Sci 438: 447–453

    Article  PubMed  CAS  Google Scholar 

  • Burgos-Trinidad M, Youngblood GL, Maroto MR, Scheller A, Robins DM, Payne AH (1997) Repression of cAMP-induced expression of the mouse P450 17 a-hydroxylase/C17–20 lyase gene (Cyp17) by androgens. Mol Endocrinol 11: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Calkins JH, Guo H, Sigel MM, Lin T (1990a) Tumor necrosis factor-a enhances inhibitory effects of interleukin-1ß on Leydig cell steroidogenesis. Biochem Biophys Res Commun 166: 1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Calkins JH, Guo H, Sigel MM, Lin T (1990b) Differential effects of recombinant interleukin-la and ß on Leydig cell function. Biochem Biophys Res Commun 167: 548–553

    Article  PubMed  CAS  Google Scholar 

  • Caron KM, Ikeda Y, Soo SC, Stocco DM, Parker KL, Clark BJ (1997) Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol Endocrinol 11: 138–147

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro S, Pani L, Guidotti A, Costa E (1993) ACTH-induced mitochondrial DBI receptor (MDR) and diazepam binding inhibitor ( DBI) expression in adrenals of hypophysectomized rats is not cause-effect related to its immediate steroidogenic action. Life Sci 53: 1137–1147

    Google Scholar 

  • Chanderbhan R, Noland BJ, Scallen TJ, Vahouny GV (1982) Sterol carrier protein 2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem 257: 8928–8934

    PubMed  CAS  Google Scholar 

  • Chandrashekar V, Bartke A (1992) The influence of beta-endorphin on testicular endocrine function in adult rats. Biol Reprod 47: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Charreau EH, Attramadal A, Torjesen P, Purvis K, Calandra R, Hansson V (1977) Prolactin binding in rat testis: specific receptors in interstitial cells. Mol Cell Endocrinol 6: 303–307

    Article  PubMed  CAS  Google Scholar 

  • Chase DJ, Karle JA, Fogg RE (1992) Maintenance or stimulation of steroidogenic enzymes and testosterone production in rat Leydig cells by continuous and pulsatile infusions of luteinizing hormone during passive immunization against gonadotrophin-releasing hormone. J Reprod Fertil 95: 657–667

    Article  PubMed  CAS  Google Scholar 

  • Chatelain PG, Sanchez P, Saez JM (1991) Growth hormone and insulin-like growth factor I increase testicular luteinizing hormone receptors and steroidogenic responsiveness of growth hormone deficient dwarf mice. Endocrinology 128: 1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Chemes HE, Gottlieb SE, Pasqualini T, Domenichini E, Rivarola MA, Bergada C (1985) Response to acute hCG stimulation and steroidogenic potential of Leydig cell fibroblastic precursors in humans. J Androl 6: 102–112

    PubMed  CAS  Google Scholar 

  • Choi MS, Cooke BA (1990) Evidence for two independent pathways in the stimulation of steroidogenesis by luteinizing hormone involving chloride channels and cyclic AMP. FEBS Lett 261: 402–404

    Article  PubMed  CAS  Google Scholar 

  • Christensen AK, Gillim SW (1969) The correlation of fine structure and function in steroid-secreting cells, with emphasis on those of the gonad. In: McKearns KW (ed) The gonads. Appleton-Century-Croft, New York, pp 415–488

    Google Scholar 

  • Christensen AK, Mason NR (1965) Comparative ability of seminiferous tubules and interstitial tissue of rat testes to synthesize androgens from progesterone-4-’4C in vitro. Endocrinology 76: 646–656

    Article  PubMed  CAS  Google Scholar 

  • Chung B, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL (1986) Human cholesterol side chain cleavage enzyme, P450SCC: cDNA cloning, assignment of the gene to chromosome 15 and expression in the placenta. Proc Natl Acad Sci USA 83: 8962–8966

    Article  PubMed  CAS  Google Scholar 

  • Chung B, Picardo-Leonard J, Haniu M, Bienkowski M, Hall PF, Shively JE, Miller WL (1987) Cytochrome P450C17 cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc Natl Acad Sci USA 84: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Chung B, Guo I-C, Chou S-J (1997) Transcriptional regulation of the CYP11A1 and ferredoxin genes. Steroids 62: 37–42

    Article  PubMed  CAS  Google Scholar 

  • Cicero TJ, Adams ML, O’Connor LH, Nock B (1989) In vivo evidence for a direct effect of naloxone on steroidogenesis in the male rat. Endocrinology 125: 957–963

    Article  PubMed  CAS  Google Scholar 

  • Clark BJ, Wells J, King SR, Stocco DM (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269: 28 3 14–28 322

    Google Scholar 

  • Clark BJ, Soo SC, Caron KM, Ikeda Y, Parker KL, Stocco DM (1995) Hormonal and developmental regulation of the steroidogenic acute regulatory ( StAR) protein. Mol Endocrinol 9: 1346–1355

    Article  PubMed  CAS  Google Scholar 

  • Clark SJ, Ellis N, Styne DM, Gluckman PD, Kaplan SL, Grumbach MM (1984) Hormone ontogeny in the ovine fetus. XVII. Demonstration of pulsatile luteinizing hormone secretion by the fetal pituitary gland. Endocrinology 115: 1774–1779

    Article  PubMed  CAS  Google Scholar 

  • Clarke TR, Bain PA, Burmeister M, Payne AH (1996) Isolation and characterization of several members of the murine Hsd3 3 gene family. DNA Cell Biol 15: 387–399

    Article  PubMed  CAS  Google Scholar 

  • Clayton RN (1996) Gonadotrophin receptors. Baillieres Clin Endocrinol Metab 10: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Clayton RN, Huhtaniemi IT (1982) Absence of gonadotropin-releasing hormone receptors in human gonadal tissue. Nature 299: 56–59

    Article  PubMed  CAS  Google Scholar 

  • Clements JA, Reyes FI, Winter JSD, Faiman C (1976) Studies on human sexual development: III. Fetal pituitary, serum and amniotic fluid concentrations of LH, CG and FSH. J Clin Endocrinol Metab 42: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Cochran RC, Schuetz AW, Ewing LL (1979) Age-related changes in conversion of 5a-androstan17ß-o1–3-one to 5a-androstane-313,1713-diol and 5a-androstane-3a,17ß-diol by rat testicular cells in vitro. J Reprod Fertil 57: 143–147

    Article  PubMed  CAS  Google Scholar 

  • Collin O, Bergh A (1996) Leydig cells secrete factors which increase vascular permeability and endothelial cell proliferation. Int J Androl 19: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Collin O, Bergh A, Damber J-E, Widmark A (1993) Control of testicular vasomotion by testosterone and tubular factors in rats. J Reprod Fertil 97: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Cooke BA (1990) Is cyclic AMP an obligatory second messenger for luteinizing hormone? Mol Cell Endocrinol 69: C11 - C15

    Article  PubMed  CAS  Google Scholar 

  • Cooke BA, Janszen FHA, van Driel MJA, van der Molen HJ (1979) Evidence for the involvement of lutropin-independent RNA synthesis in Leydig cell steroidogenesis. Mol Cell Endocrinol 14: 181–189

    Article  PubMed  CAS  Google Scholar 

  • Cooke BA, Dirami G, Chaudry L, Choi MSK, Abayasekara DRE, Phipp L (1991) Release of arachidonic acid and the effects of corticosteroids on steroidogenesis in rat testis Leydig cells. J Steroid Biochem Mol Biol 40: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Cooke BA, Choi MCK, Dirami G, Lopez-Ruiz MP, West AP (1992) Control of steroidogenesis in Leydig cells. J Steroid Biochem Mol Biol 43: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Cooke PS, Meisami E (1991) Early postnatal hypothyroidism increases adult size of testis and other reproductive organs, but does not increase testosterone levels. Endocrinology 129: 237–243

    Article  PubMed  CAS  Google Scholar 

  • Cudicini C, Lejeune H, Gomez E, Bosmans E, Ballet F, Saez J, Jegou B (1997) Human Leydig cells and Sertoli cells are producers of interleukins-1 and -6. J Clin Endocrinol Metab 82: 1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Cunningham GR, Huckins C (1979) Persistence of complete spermatogenesis in the presence of low intratesticular concentrations of testosterone. Endocrinology 105: 177–186

    Article  PubMed  CAS  Google Scholar 

  • Cutolo M, Balleari E, Giusti M, Monachesi M, Accardo S (1988) Sex hormone status of patients with rheumatoid arthritis: evidence of low serum concentrations at baseline and after human chorionic gonadotrophin stimulation. Arthritis Rheum 31: 1314–1317

    Article  PubMed  CAS  Google Scholar 

  • Damber JE, Bergh A, Widmark A (1987) Testicular blood flow and microcirculation in rats after treatment with ethane dimethane sulfonate. Biol Reprod 37: 191–1296

    Google Scholar 

  • Darney KJ, Ewing L (1981) Autoregulation of testosterone secretion in perfused rat testis. Endocrinology 109: 993–995

    Article  PubMed  CAS  Google Scholar 

  • Davis JL (1982) Lowering prolactin levels in a hyperprolactinaemic man. Responses of luteinizing hormone, follicle-stimulating hormone, and testosterone. Arch Intern Med 142: 146–148

    Article  PubMed  CAS  Google Scholar 

  • De SK, Chen HL, Pace JL, Hunt JS, Terranova PF, Enders GC (1993) Expression of tumor necrosis factor-a in mouse spermatogenic cells. Endocrinology 133: 389–396

    Article  PubMed  CAS  Google Scholar 

  • de Kretser DM (1967) The fine structure of the testicular interstitial cells in men of normal androgenic status. Z Zellforsch 80: 594–609

    Article  PubMed  Google Scholar 

  • de Kretser DM, Catt KJ, Burger HG, Smith GC (1969) Radioautographic studies on the localization of 125I-labeled human luteinizing and growth hormone in immature male rats. J Endocrinol 43: 105–111

    Article  PubMed  Google Scholar 

  • de Kretser DM, Burger HG, Fortune D, Hudson B, Long AR, Paulsen CA Taft HP (1972) Hormonal, histological and chromosomal studies in adult males with testicular disorders. J Clin Endocrinol Metab 35: 392–401

    Article  PubMed  Google Scholar 

  • de Kretser DM, Burger HG, Hudson B, Keogh EJ (1975) The hCG stimulation test in men with testicular disorders. Clin Endocrinol 4: 591–596

    Article  Google Scholar 

  • Del Punta K, Charreau EH, Pignataro OP (1996) Nitric oxide inhibits Leydig cell steroidogenesis. Endocrinology 137: 5337–5343

    Article  PubMed  Google Scholar 

  • Desjardins C (1996) Fluid exchange and transport of endocrine and paracrine solutes supporting the Leydig cell. In: Payne AH, Hardy MP, Russell LD (eds) The Leydig cell. Cache River Press, Vienna, pp 507–521

    Google Scholar 

  • de Winter JP, Timmerman MA, Vanderstichele HMJ, Klaij IA, Grootenhuis AJ, Rommerts FFG, de Jong FH (1992) Testicular Leydig cells in vitro secrete only inhibin a-subunits, whereas Leydig cell tumors can secrete bioactive inhibin. Mol Cell Endocrinol 83: 105–115

    Article  PubMed  Google Scholar 

  • Dix CJ, Habberfield AD, Sullivan MHF, Cooke BA (1984) Inhibition of steroid production in Leydig cells by non-steroidal anti-inflammatory and related compounds: evidence for the involvement of lipoxygenase products in steroidogenesis. Biochem J 219: 529–537

    PubMed  CAS  Google Scholar 

  • Duckett RJ, Hedger MP, McLachlan RI, Wreford NG (1997a) The effects of gonadotropin-releasing hormone-immunisation and recombinant follicle-stimulating hormone on the Leydig cell and macrophage populations of the adult rat testis. J Androl 18: 417–423

    PubMed  CAS  Google Scholar 

  • Duckett RJ, Wreford NG, Meachem SJ, McLachlan RI, Hedger MP (1997b) The effect of chorionic gonadotropin and flutamide on Leydig cell and macrophage populations in the testosterone-estradiol implanted rat. J Androl 18: 656–662

    PubMed  CAS  Google Scholar 

  • Dufau ML (1988) Endocrine regulation and communicating functions of the Leydig cell. Annu Rev Physiol 50: 483–508

    Article  PubMed  CAS  Google Scholar 

  • Dufau ML, Ulisse S, Khanum A, Buczko E, Kitamura M, Fabbri A, Namiki M (1989) LH action in the Leydig cell: modulation by angiotensin II and corticotropin releasing hormone, and regulation of P450„a mRNA. J Steroid Biochem 34: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Dufau ML, Miyagawa Y, Takada S, Khanum A, Miyagawa H, Buczko E (1997) Regulation of androgen synthesis: the late steroidogenic pathway. Steroids 62: 128–132

    Article  PubMed  CAS  Google Scholar 

  • Eddy EM, Washburn TF, Bunch DO, Goulding EH, Gladen BC, Lubahn DB, Korach KS (1996) Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137: 4796–4805

    Article  PubMed  CAS  Google Scholar 

  • Eisenhauer KM, McCue PM, Nayden DK, Osawa Y, Roser JF (1994) Localization of aromatase in equine Leydig cells. Domest Anim Endocrinol 11: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Ellis LC (1972) Inhibition of rat testicular androgen synthesis in vitro by melatonin and serotonin. Endocrinology 90: 17–28

    Article  PubMed  CAS  Google Scholar 

  • El Safoury S, Bartke A (1974) Effects of follicle-stimulating hormone and luteinizing hormone on plasma testosterone levels in hypophysectomized and intact immature and adult male rats. J Endocrinol 61: 193–198

    Article  PubMed  Google Scholar 

  • Faiman C, Winter JSD (1971) Sex differences in gonadotrophin concentrations in infancy. Nature 232: 130–131

    Article  PubMed  CAS  Google Scholar 

  • Fargin A, Yamamoto K, Cotecchia S, Goldsmith PK, Spiegel AM, Lapetina EG, Caron MG, Lefkowitz RJ (1991) Dual coupling of the cloned 5-HT1A-receptor to both adenylyl cyclase and phospholipase-C is mediated via the same gi-protein. Cell Signal 3: 547–557

    Article  PubMed  CAS  Google Scholar 

  • Fawcett DW, Neaves WR, Flores MN (1973) Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9: 500–532

    PubMed  CAS  Google Scholar 

  • Fisher CR, Graves KH, Parlow AF, Simpson ER (1998) Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Prac Natl Acad Sci USA 95: 6995–6970

    Article  Google Scholar 

  • Fountain S, Holland MK, Hinds LA, Janssens PA, Kerr PJ (1997) Interstitial orchitis with impaired steroidogenesis and spermatogenesis in the testes of rabbits infected with an attenuated strain of myxoma virus. J Reprod Fertil 110: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Gao HB, Shan LX, Monder C, Hardy MP (1996) Suppression of endogenous corticosterone levels in vivo increases the steroidogenic capacity of purified rat Leydig cells in vitro. Endocrinology 137: 1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Gautier C, Levacher C, Avallet O, Vigier M, Rouiller-Fabre V, Lecerf L, Saez J, Habert R (1994) Immunohistochemical localization of transforming growth factor-I31 in the fetal and neonatal rat testis. Mol Cell Endocrinol 99: 55–61

    Article  PubMed  CAS  Google Scholar 

  • Gaytan F, Bellido C, Morales C, Reymundo C, Aguilar E, van Rooijen N (1994a) Effects of macrophage depletion at different times after treatment with ethylene dimethane sulfonate ( EDS) on the regeneration of Leydig cells in the adult rat. J Androl 15: 558–564

    PubMed  CAS  Google Scholar 

  • Gaytan F, Bellido C, Morales C, Reymundo C, Aguilar E, van Rooijen N (1994b) Selective depletion of testicular macrophages and prevention of Leydig cell repopulation after treatment with ethylene dimethane sulfonate in rats. J Reprod Fertil 101: 175–182

    Article  PubMed  CAS  Google Scholar 

  • Gaytan F, Pinilla L, Romero JL, Aguilar E (1994c) Differential effects of the administration of human chorionic gonadotropin to postnatal rats. J Endocrinol 142: 527–534

    Article  PubMed  CAS  Google Scholar 

  • Gaytan F, Bellido C, Aguilar E, van Rooijen N (1994d) Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 102: 393–399

    Article  PubMed  CAS  Google Scholar 

  • Gaytan F, Bellido C, Morales C,van Rooijen N, Aguilar E (1995) Role of testicular macrophages in the response of Leydig cells to gonadotropins in young hypophysectomized rats. J Endocrinol 147: 463–471

    Article  PubMed  CAS  Google Scholar 

  • Ge R-S, Hardy DO, Catterall JF, Hardy MP (1997) Developmental changes in glucocorticoid receptor and 1lß-hydroxysteroid dehydrogenase oxidative and reductive activities in rat Leydig cells. Endocrinology 138: 5089–5095

    Article  PubMed  CAS  Google Scholar 

  • Geissler WM, Davis DL, Wu L, Bradshaw KD, Patel S, Mendonca BB, Elliston KO, Wilson JD, Russell DW, Andersson S (1994) Male pseudohermaphroditism caused by mutations of testicular 17ß-hydroxysteroid dehydrogenase 3. Nat Genet 7: 34–39

    Article  PubMed  CAS  Google Scholar 

  • Gelber SJ, Hardy MP, Mendis-Handagama SMLC, Casella SJ (1992) Effects of insulin-like growth factor-1 on androgen production by highly purified pubertal and adult rat Leydig cells. J Androl 13: 125–130

    PubMed  CAS  Google Scholar 

  • Georgiou MG, Perkins LM, Payne AH (1987) Steroid synthesis-dependent, oxygen-mediated damage of mitochondrial and microsomal cytochrome P450 enzymes in rat Leydig cell cultures. Endocrinology 121: 1390–1399

    Article  PubMed  CAS  Google Scholar 

  • Gérard N, Syed V, Bardin CW, Genetet N, Jégou B (1991) Sertoli cells are the site of interleukin1a synthesis in rat testis. Mol Cell Endocrinol 82: R13 - R16

    Article  PubMed  Google Scholar 

  • Gnessi L, Fabbri A, Spera G (1997) Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocr Rev 18: 541–609

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Calkins JH, Sigel MM, Lin T (1990) Interleukin-2 is a potent inhibitor of Leydig cell steroidogenesis. Endocrinology 127: 1234–1239

    Article  PubMed  CAS  Google Scholar 

  • Habert R, Picon R (1984) Testosterone, dihydrotestosterone and estradiol-17 beta levels in maternal and fetal plasma and in fetal testes in the rat. J Steroid Biochem 21: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Hagen C, McNeilly AS (1975) Identification of human luteinizing hormone, follicle-stimulating hormone, luteinizing hormone 3-subunit and gonadotropin a-subunit in foetal and adult pituitary glands. J Endocrinol 67: 49–57

    Article  PubMed  CAS  Google Scholar 

  • Hales DB (1992) Interleukin-1 inhibits Leydig cell steroidogenesis primarily by decreasing 17a-hydroxylase/C17–20 lyase cytochrome P450 expression. Endocrinology 131: 2165–2172

    Article  PubMed  CAS  Google Scholar 

  • Hales DB, Sha L, Payne AH (1987) Testosterone inhibits cAMP-induced de novo synthesis of Leydig cell cytochrome P-450,7. by an androgen receptor-mediated mechanism. J Biol Chem 262: 11200–11206

    PubMed  CAS  Google Scholar 

  • Hales DB, Xiong Y, Tur-Kaspa I (1992) The role of cytokines in the regulation of Leydig cell P450c17 gene expression. J Steroid Biochem Mol Biol 43: 907–914

    Article  PubMed  CAS  Google Scholar 

  • Hall PF (1994) Testicular steroid synthesis: organization and regulation. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 1335–1362

    Google Scholar 

  • Hall PF, Young DG (1968) Site of action of trophic hormones upon the biosynthetic pathways to steroid hormones. Endocrinology 82: 559–565

    Article  PubMed  CAS  Google Scholar 

  • Hall PF, Irby DC, de Kretser DM (1969) Conversion of cholesterol to androgens by rat testes: comparison of interstitial cells and seminiferous tubules. Endocrinology 84: 488–496

    Article  PubMed  CAS  Google Scholar 

  • Hall PF, Charponnier C, Nakamura M, Gabbiani G (1979) The role of microfilaments in the response of Leydig cells to luteinizing hormone. J Steroid Biochem 11: 1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Hall PF, Osawa S, Mrotek J (1981) The influence of calmodulin on steroid synthesis in Leydig cells from rat testis. Endocrinology 109: 1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Haour F, Kouznetzova B, Dray F, Saez JM (1979) hCG-induced prostaglandin E2 and F2. release in adult rat testis: role in Leydig cell desensitization to hCG. Life Sci 24: 2151–2158

    Google Scholar 

  • Hardy MP, Ganjam VK (1997) Stress, 1113-HSD, and Leydig cell function. J Androl 18: 475–479

    PubMed  CAS  Google Scholar 

  • Hardy MP, Zirkin BR, Ewing LL (1989) Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinology 124: 762–770

    Article  PubMed  CAS  Google Scholar 

  • Hardy MP, Kelce WR, Klinefelter GR, Ewing LL (1990) Differentiation of Leydig cell precursors in vitro: a role for androgen. Endocrinology 127: 488–490

    Article  PubMed  CAS  Google Scholar 

  • Hardy MP, Kirby JD, Hess RA, Cooke PS (1993) Leydig cells increase their numbers but decline in steroidogenic function in the adult rat after neonatal hypothyroidism. Endocrinology 132: 2417–2420

    Article  PubMed  CAS  Google Scholar 

  • Hardy MP, Sharma RS, Arambepola NK, Sottas CM, Russell LD, Bunick D, Hess RA, Cooke PS (1996) Increased proliferation of Leydig cells induced by neonatal hypothyroidism in the rat. J Androl 17: 231–238

    PubMed  CAS  Google Scholar 

  • Harley VR (1993) Genetic control of testis determination. In: de Kretser DM (ed) Molecular biology of the male reproductive system. Academic Press, New York, pp 1–20

    Google Scholar 

  • Hayes R, Chalmers SJ, Nikolic-Paterson DP, Atkins RC, Hedger MP (1996) Secretion of bioactive interleukin-1 by rat testicular macrophages in vitro. J Androl 17: 41–49

    PubMed  CAS  Google Scholar 

  • He L, Hedger MP, Clements JA, Risbridger GP (1991) Localization of immunoreactive 13-endorphin and adrenocorticotropic hormone, and pro-opiomelanocortin mRNA to testicular interstitial tissue macrophages. Biol Reprod 45: 282–289

    Article  Google Scholar 

  • Hedger MP (1997) Testicular leukocytes: what are they doing? Rev Reprod 2: 38–47

    Article  PubMed  CAS  Google Scholar 

  • Hedger MP, Clarke L (1993) Isolation of rat blood lymphocytes using a two-step Percoll density gradient: effect of activin (erythroid differentiation factor) on peripheral T lymphocyte proliferation in vitro. J Immunol Meth 163: 133–136

    Article  CAS  Google Scholar 

  • Hedger MP, Eddy EM (1990) Leydig cell cooperation in vitro: evidence for communication between adult rat Leydig cells. J Androl 11: 9–16

    PubMed  CAS  Google Scholar 

  • Hedger MP, Risbridger GP (1992) Effect of serum and serum lipoproteins on testosterone production by adult rat Leydig cell in vitro. J Steroid Biochem Mol Biol 43: 581–589

    Article  PubMed  CAS  Google Scholar 

  • Hedger MP, Robertson DM, Browne CA, de Kretser DM (1985) The isolation and measurement of luteinizing hormone-releasing hormone ( LHRH) from the rat testis. Mol Cell Endocrinol 42: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Hedger MP, Robertson DM, de Kretser DM, Risbridger GP (1990) The quantification of steroidogenesis-stimulating activity in testicular interstitial fluid by an in vitro bioassay employing adult rat Leydig cells. Endocrinology 127: 1967–1977

    Article  PubMed  CAS  Google Scholar 

  • Hedger MP, McFarlane JR, de Kretser DM, Risbridger GP (1994) Multiple factors with steroidogenesis-regulating activity in testicular intertubular fluid from normal and experimentally cryptorchid adult rats. Steroids 59: 676–685

    Article  PubMed  CAS  Google Scholar 

  • Holash JA, Harik SI, Perry G, Stewart PA (1993) Barrier properties of testis microvessels. Proc. Natl Acad Sci USA 90:1 1 069–11 073

    Google Scholar 

  • Hsueh AJW, Dufau ML, Catt KJ (1977) Gonadotropin-induced regulation of luteinizing hormone receptors and desensitization of testicular 3‘,5’-cyclic AMP and testosterone responses. Proc Natl Acad Sci USA 74: 592–595

    Article  PubMed  CAS  Google Scholar 

  • Hsueh AJW, Dahl KD, Vaughan J, Tucker E, Rivier J, Bardin CW, Vale W (1987) Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci USA 84: 5082–5086

    Article  PubMed  CAS  Google Scholar 

  • Hu Z-Z, Buczko E, Zhuang L, Dufau ML (1994) Sequence of the 3 ’-noncoding region of the luteinizing hormone receptor gene and identification of two polyadenylation domains that generate the major mRNA forms. Biochim Biophys Acta 1220: 330–337

    Article  Google Scholar 

  • Huhtaniemi I (1977) Studies on steroidogenesis and its regulation in human fetal adrenal and testis. J Steroid Biochem 8: 491–497

    Article  PubMed  CAS  Google Scholar 

  • Hutson JC (1992) Development of cytoplasmic digitations between Leydig cells and testicular macrophages of the rat. Cell Tissue Res 267: 385–389

    Article  PubMed  CAS  Google Scholar 

  • Hutson JC (1994) Testicular macrophages. Int Rev Cytol 149: 99–143

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Rebois RV (1989) Protein kinase C can desensitize the gonadotropin-responsive adenylate cyclase in Leydig tumor cells. J Biol Chem 264: 8504–8908

    PubMed  CAS  Google Scholar 

  • Irby DC, Hall PF (1971) Stimulation by ICSH of protein biosynthesis in isolated Leydig cells from hypophysectomized rats. Endocrinology 89: 1367–1374

    Article  PubMed  CAS  Google Scholar 

  • Jackson AE, O’Leary PC, Ayers MM, de Kretser DM (1986) The effects of ethylene dimethane sul-phonate (EDS) on rat Leydig cells: evidence to support a connective tissue origin of Leydig cells. Biol Reprod 35: 425–437

    Article  PubMed  CAS  Google Scholar 

  • Janszen FHA, Cooke BA, van Driel MJA, van der Molen HJ (1976) The effect of calcium ions on testosterone production in Leydig cells from rat testis. Biochem J 160: 433–437

    PubMed  CAS  Google Scholar 

  • Jégou B, Laws AO, de Kretser DM (1984) Changes in testicular function induced by short-term exposure of the rat testis to heat: further evidence for interaction of germ cells, Sertoli cells and Leydig cells. Int J Androl 7: 244–257

    Google Scholar 

  • Kaler LW, Neaves WB (1978) Attrition of the human Leydig cell population with advancing age. Anat Rec 192: 513–518

    Article  PubMed  CAS  Google Scholar 

  • Kalla NR, Nisula BC, Menard R, Loriaux DL (1980) The effect of estradiol on testicular testosterone biosynthesis. Endocrinology 106: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Kaplan SL, Grumbach MM, Aubert ML (1976) The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus. Maturation of central nervous system regulation of anterior pituitary function. Recent Prog Horm Res 32: 161–243

    PubMed  CAS  Google Scholar 

  • Kasson BG, Adashi EY, Hsueh AJW (1986a) Arginine vasopressin in the testis: an intragonadal peptide control system. Endocr Rev 7: 156–168

    Article  PubMed  CAS  Google Scholar 

  • Kasson BG, Lim P, Hsueh AJW (1986b) Vasoactive intestinal peptide stimulates androgen biosynthesis by cultured neonatal testicular cells. Mol Cell Endocrinol 48: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Keeney DS, Ewing LL (1990) Effects of hypophysectomy and alterations in spermatogenic func- tion on Leydig cell volume, number, and proliferation in adult rats. J Androl 11: 367–378

    PubMed  CAS  Google Scholar 

  • Keeney DS, Mendis-Handagama SMLC, Zirkin BR, Ewing LL (1988) Effect of long-term deprivation of luteinizing hormone on Leydig cell volume, Leydig cell number, and steroidogenic capacity of the rat testis. Endocrinology 123: 2906–2915

    Article  PubMed  CAS  Google Scholar 

  • Keeney DS, Sprando RL, Robaire B, Zirkin BR, Ewing LL (1990) Reversal of long-term LH deprivation on testosterone secretion and Leydig cell volume, number and proliferation in adult rats. J Endocrinol 127: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Kern S, Robertson SA, Mau VJ, Maddocks S (1995) Cytokine secretion by macrophages in the rat testis. Biol Reprod 53: 1407–1416

    Article  PubMed  CAS  Google Scholar 

  • Kerr JB, Donachie K (1986) Regeneration of Leydig cells in unilaterally cryptorchid rats: evidence for stimulation by local testicular factors. Cell Tissue Res 245: 649–655

    PubMed  CAS  Google Scholar 

  • Kerr JB, Knell CM (1988) The fate of fetal Leydig cells during the development of the fetal and postnatal rat testis. Development 103: 535–544

    PubMed  CAS  Google Scholar 

  • Kerr JB, Sharpe RM (1985a) Follicle-stimulating hormone induction of Leydig cell maturation. Endocrinology 116: 2592–2604

    Article  PubMed  CAS  Google Scholar 

  • Kerr JB, Sharpe RM (1985b) Stimulatory effect of follicle-stimulating hormone on rat Leydig cells: a morphometric and ultrastructural study. Cell Tissue Res 239: 405–415

    Article  PubMed  CAS  Google Scholar 

  • Kerr JB, Rich KA, de Kretser DM (1979) Alterations of fine structure and androgen secretion of the interstitial cells in the experimentally cryptorchid rat testis. Biol Reprod 20: 409–422

    Article  PubMed  CAS  Google Scholar 

  • Kerr JB, Bartlett JMS, Donachie K, Sharpe RM (1987) Origin of regenerating Leydig cells in the testis of the adult rat. Cell Tissue Res 249: 367–377

    PubMed  CAS  Google Scholar 

  • Khan S, Teerds K, Dorrington J (1992a) Growth factor requirements for DNA synthesis by Leydig cells from the immature rat. Biol Reprod 46: 335–341

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Khan SJ, Dorrington JH (1992b) Interleukin-1 stimulates deoxyribonucleic acid synthesis in immature rat Leydig cells in vitro. Endocrinology 131: 1853–1857

    Article  PubMed  CAS  Google Scholar 

  • Kinnally KW, Zorov DB, Antonenko YN, Snyder SH, McEnery MW, Tedesschi H (1993) Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci USA 90: 1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Kremer H, Kraaij R, Toledo SP, Post M, Fridman JB, Hayashida CY, van Reen M, Milgrom E, Ropers HH, Mariman E et al. (1995) Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat Genet 9: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto T, Ito A, Omura T (1989) Critical region in the extension peptide for the import of cytochrome P450(SCC) precursor into mitochondria. J Biochem 105: 72–78

    PubMed  CAS  Google Scholar 

  • Kumar S, Blumberg DL, Canas JA, Maddaiah VT (1994) Human chorionic gonadotropin (hCG) increases cytosolic free calcium in adult rat Leydig cells. Cell Calcium 15: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Landy H, Boepple PA, Mansfield MJ, Whitcomb RW, Schneyer AL, Crawford JD, Crigler JF Jr, Crowley WF Jr (1991) Altered patterns of pituitary secretion and renal secretion of free alpha subunit during gonadotropin-releasing hormone agonist-induced pituitary desensitization. J Clin Endocrinol Metab 72: 711–717

    Article  PubMed  CAS  Google Scholar 

  • Laslett AL, McFarlane JR, Hearn MTW, Risbridger GP (1995) Requirement for heparin sulphate proteoglycans to mediate basic fibroblast growth factor (FGF-2)-induced stimulation of Leydig cell steroidogenesis. J Steroid Biochem Mol Biol 54: 245–250

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Mason AJ, Schwall R, Szonyi E, Mather JP (1989) Secretion of activin by interstitial cells in the testis. Science 243: 396–398

    Article  PubMed  CAS  Google Scholar 

  • Lejeune H, Chuzel F, Sanchez P, Durand P, Mather JP, Saez JM (1997) Stimulating effect of both human recombinant inhibin A and activin A on immature porcine Leydig cell functions in vitro. Endocrinology 138: 4783–4791

    Article  PubMed  CAS  Google Scholar 

  • Leydig F (1850) Zur anatomie der männlichen geschlechtsorgane und analdrüsen der säugetiere [On the anatomy of the male sex organs and anal glands of mammals]. Z Wiss Zool 2: 1–57

    Google Scholar 

  • Lin D, Sugawara T, Strauss JF, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL (1995) Indispensable role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267: 1828–1831

    Article  PubMed  CAS  Google Scholar 

  • Lin T (1985) Mechanism of action of gonadotropin releasing hormone stimulated Leydig cell steroidogenesis III. The role of arachidonic acid and calcium/phospholipid dependent protein kinase. Life Sci 36: 1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Murono E, Osterman J, Troen P, Nankin HR (1979) The effects of verapamil on interstitial cell steroidogenesis. Int J Androl 2: 549–558

    Article  CAS  Google Scholar 

  • Lin T, Haskell J, Vinson N, Terracio L (1986) Direct stimulatory effects of insulin-like growth factor-I on Leydig cell steroidogenesis. Biochem Biophys Res Commun 137: 950–956

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Blaisdell J, Haskell JF (1987) Transforming growth factor-I3 inhibits Leydig cell steroidogenesis in primary culture. Biochem Biophys Res Commun 146: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Blaisdell J, Haskell JF (1988) Hormonal regulation of type I insulin-like growth factor receptors of Leydig cells in hypophysectomized rats. Endocrinology 123: 134–139

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Calkins JH Morris PL, Vale W, Bardin CW (1989) Regulation of Leydig cell function in primary culture by inhibin and activin. Endocrinology 125: 2134–2140

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Wang D, Nagpal ML, Chang W, Calkins JH (1992) Down-regulation of Leydig cell insulin-like growth factor-I gene expression by interleukin-1. Endocrinology 130: 1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Wang D, Nagpal ML (1993) Human chorionic gonadotropin induces interleukin-1 gene expression in rat Leydig cells in vivo. Mol Cell Endocrinol 95: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Lindzey J, Wetsel WC, Couse JF, Stoker T, Cooper R, Korach KS (1998) Effects of castration and chronic steroid treatments on hypothalamic gonadotropin-releasing hormone content and pituitary gonadotropins in male wild-type and estrogen receptor-cc knockout mice. Endocrinology 139: 4092–4101

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Ruiz MP, Choi MS, Rose MP, West AP, Cooke BA (1992) Direct effect of arachidonic acid on protein kinase C and LH-stimulated steroidogenesis in rat Leydig cells; evidence for tonic inhibitory control of steroidogenesis by protein kinase C. Endocrinology 130: 1122–1130

    Article  PubMed  CAS  Google Scholar 

  • Lording DW, de Kretser DM (1972) Comparative ultrastructural and histochemical studies of the interstitial cells of the rat testis during fetal and postnatal development. J Reprod Fertil 29: 261–269

    Article  PubMed  CAS  Google Scholar 

  • Lorence MC, Naville D, Graham-Lorence SE, Mack SO, Murry BA, Trant JM, Mason JI (1991) 313-hydroxysteroid dehydrogenase/A’-isomerase expression in rat and characterization of the testis isoform. Mol Cell Endocrinol 80: 21–31

    Google Scholar 

  • Loveland KL, Hedger MP, Risbridger GP, Herszfeld D, de Kretser DM (1993) Identification of receptor tyrosine kinases in the rat testis. Mol Reprod Dev 36: 440–447

    Article  PubMed  CAS  Google Scholar 

  • Lubahn DB, Brown TR, Simental JA, Higgs HN, Migeon CJ, Wilson EM, French FS (1989) Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity. Proc Natl Acad Sci USA 86: 9534–9538

    Article  PubMed  CAS  Google Scholar 

  • Lund J, Ahlgren R, Wu DH, Kagimoto M, Simpson ER, Waterman MR (1990) Transcriptional regulation of the bovine CYP17 (P-450,7a) gene. Identification of two cAMP regulatory regions lacking the consensus cAMP-responsive element ( CRE ). J Biol Chem 265: 3304–3312

    Google Scholar 

  • Lund J, Bakke M, Mellgren G, Morohashi K, Doskeland S-O (1997) Transcriptional regulation of the bovine CYP17 gene by cAMP. Steroids 62: 43–45

    Article  PubMed  CAS  Google Scholar 

  • Maddocks S, Sharpe RM (1989) Interstitial fluid volume in the rat testis: androgen-dependent regulation by the seminiferous tubules. J Endocrinol 120: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Mancini RE, Vilar O, Lavieri JC, Andrada JA, Heinrich JJ (1963) Development of Leydig cells in the normal human testis. A cytological, cytochemical and quantitative study. Am J Anat 112: 203–210

    Google Scholar 

  • Matteson KL, Picado-Leonard J, Chung B, Mohandas TK, Miller WL (1986) Assignment of the gene for adrenal P-450C17 (steroid 17a-hydroxylase/17,20-lyase) to human chromosome 10. J Clin Endocrinol Metab 63: 798–791

    Article  Google Scholar 

  • Mauduit C, Chauvin MA, de Peretti E, Morera AM, Benahmed M (1991a) Effect of activin A on dehydroepiandrosterone and testosterone secretion by primary immature porcine Leydig cells. Biol Reprod 45: 101–109

    Article  PubMed  CAS  Google Scholar 

  • Mauduit C, Hartmann DJ, Chauvin MA, Revol A, Morera AM, Benahmed M (1991b) Tumor necrosis factor a inhibits gonadotropin action in cultured porcine Leydig cells: site(s) of action. Endocrinology 129: 2933–2940

    Article  PubMed  CAS  Google Scholar 

  • Mauduit C, Chauvin MA, Hartmann DJ, Revol A, Morera AM, Benahmed M (1992) Interleukinla as a potent inhibitor of gonadotropin action in porcine Leydig cells: site(s) of action. Biol Reprod 46: 1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Seidl K, Lahr G, Bitter-Suermann D, Christoph A, Barthels D, Wille W, Gratzl M (1992) Leydig cells express neural cell adhesion molecules in vivo and in vitro. Biol Reprod 47: 656–664

    Article  PubMed  CAS  Google Scholar 

  • McFarland KC, Sprengel R, Phillips HS, Kohler M, Rosemblit N, Nikolics K, Segaloff DL, Seeberg PH (1989) Lutropin-choriogonadotropin receptor; an unusual member of the G protein coupled receptor family. Science 245: 494–499

    Article  PubMed  CAS  Google Scholar 

  • McFarlane JR, Laslett A, de Kretser DM, Risbridger GP (1996) Evidence that heparin binding autocrine factors modulate testosterone production by the adult rat Leydig cell. Mol Cell Endocrinol 118: 57–63

    Article  PubMed  CAS  Google Scholar 

  • McNeilly AS, de Kretser DM, Sharpe RM (1979) Modulation of prolactin, luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by LHRH and bromocriptine (CB154) in the hypophysectomized pituitary-grafted male rat and its effects on testicular LH receptors and testosterone output. Biol Reprod 21: 141–147

    Article  PubMed  CAS  Google Scholar 

  • McPhaul MJ, Marcelli M, Zoppi S, Griffin JE, Wilson JD (1993) Genetic basis of endocrine disease. 4. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. J Clin Endocrinol Metab 76: 17–23

    Google Scholar 

  • Meikle AW, Cardoso de Sousa JC, Dacosta N, Bishop DK, Samlowski WE (1992) Direct and indirect effects of murine interleukin-2, gamma interferon, and tumor necrosis factor on testosterone synthesis in mouse Leydig cells. J Androl 13: 437–443

    PubMed  CAS  Google Scholar 

  • Meinhardt A, Bacher M, McFarlane JR, Metz CN, Seitz J, Hedger MP, de Kretser DM, Bucala R (1996) Macrophage migration inhibitory factor (MIF) production by rat Leydig cells: evidence for a role in local regulation of testicular function. Endocrinology 137: 5090–5095

    Article  PubMed  CAS  Google Scholar 

  • Mendelson C, Dufau ML, Catt KJ (1975) Dependence of gonadotropin-induced steroidogenesis on RNA and protein synthesis in the interstitial cells of the rat testis. Biochim Biophys Acta 411: 222–230

    Article  PubMed  CAS  Google Scholar 

  • Mendis-Handagama SMLC, Risbridger GP, de Kretser DM (1987) Morphometric analysis of the components of the neonatal and the adult rat testis interstitium. Int J Androl 10: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Miller SC, Bowman BM, Rowland HG (1983) Structure, cytochemistry, endocytic activity, and immunoglobulin ( Fc) receptors of rat testicular interstitial-tissue macrophages. Am J Anat 168: 1–13

    Google Scholar 

  • Misro MM, Ganguly A, Das RP (1993) Is testosterone essential for the maintenance of normal morphology in immature rat Leydig cells? Int J Androl 16: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Mock EJ, Norton HW, Frankel AI (1978) Daily rhythmicity of serum testosterone concentration in the male laboratory rat. Endocrinology 103: 1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Molenaar R, de Rooij DG, Rommerts FFG, van der Molen (1986) Repopulation of Leydig cells in mature rats after selective destruction of the existent Leydig cells with ethylene dimethane sulfonate is dependent on luteinizing hormone and not follicle-stimulating hormone. Endocrinology 118: 2546–2554

    Article  PubMed  CAS  Google Scholar 

  • Moore A, Morris ID (1993) The involvement of insulin-like growth factor I in local control of steroidogenesis and DNA synthesis of Leydig and non-Leydig cells in the rat testicular interstitium. J Endocrinol 138: 107–114

    Article  PubMed  CAS  Google Scholar 

  • Moore C, Hutson JC (1994) Physiological relevance of tumor necrosis factor in mediating macrophage-Leydig cell interactions. Endocrinology 134: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Moore C, Moger WH (1991) Interleukin-1 alpha-induced changes in androgen and cyclic adenosine 3 ‘,5‘ -monophosphate release in adult rat Leydig cells in culture. J Endocrinol 129: 381–390

    Article  PubMed  CAS  Google Scholar 

  • Moran 0, Sandri G, Panfili E, Stuhmer W, Sorgato MC (1990) Electrophysiological characterization of contact sites in brain mitochondria. J Biol Chem 265: 908–913

    PubMed  CAS  Google Scholar 

  • Morohashi K, Sogawa K, Omura T, Fujii-Kuriyama Y (1987) Gene structure of human cytochrome P-450 ( SCC), cholesterol desmolase. J Biochem 101: 879–887

    Google Scholar 

  • Morohashi K, Zanger UM, Honda S, Hara M, Waterman MR, Omura T (1993) Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol Endocrinol 7: 1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Morris AJ, Taylor MF, Morris ID (1997) Leydig cell apoptosis in response to ethane sulphonate after both in vivo and in vitro treatment. J Androl 18: 274–280

    PubMed  CAS  Google Scholar 

  • Morris ID, Phillips DM, Bardin CW (1986) Ethylene dimethanesulfonate destroys Leydig cells in the rat testis. Endocrinology 118: 709–719

    Article  PubMed  CAS  Google Scholar 

  • Morris MD, Chaikoff IL (1959) The origin of cholesterol in liver, small intestines, adrenal gland and testis of the rat: dietary versus endogenous contributions. J Biol Chem 234: 1095–1097

    PubMed  CAS  Google Scholar 

  • Morrow AF, Gyorki S, Warne GL, Burger HG, Bangah ML, Outch KH, Mirovics A, Baker HWG (1987) Variable androgen receptor levels in infertile men. J Clin Endocrinol Metab 64: 1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Mulder E, Peters MJ, de Vries J, van der Molen HJ (1975) Characterization of a nuclear receptor for testosterone in seminiferous tubules of mature rat testes. Mol Cell Endocrinol 2: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Mullaney BP, Skinner MK (1993) Transforming growth factor-13 ((31, 132, and ß3) gene expression and action during pubertal development of the seminiferous tubule: potential role at the onset of spermatogenesis. Mol Endocrinol 7: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Murono EP, Washburn AL, Goforth DP, Wu N (1993) Fibroblast growth factor-induced increase in 125I-human chorionic gonadotropin binding to luteinizing hormone receptors in cultured immature Leydig cells is mediated by binding to heparan sulfate proteoglycans. Mol Cell Endocrinol 97: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Naftolin F, Feder HH (1973) Suppression of luteinizing hormone secretion in male rats by 5aandrostan-1713-ol-3-one (dihydrotestosterone) propionate. J Endocrinol 56: 155–156

    Article  PubMed  CAS  Google Scholar 

  • Nakajin S, Shively J, Yuan PM, Hall PF (1981) Microsomal cytochrome P-450 from neonatal pig testes: two enzymatic activities (17a-hydroxylase and C,7–20-lyase) associated with one protein. Biochemistry 20: 4037–4045

    Article  PubMed  CAS  Google Scholar 

  • Namiki M, Yokokawa K, Okuyama A, Koh E, Kiyohara H, Nakao M, Sakoda S, Matsumoto K, Sonoda T (1991) Evidence for the presence of androgen receptors in human Leydig cells. J Steroid Biochem Mol Biol 38: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Nason TF, Han XG, Hall PF (1992) Cyclic AMP regulates expression of the rat gene for steroid 17a-hydroxylase/C17–20-lyase P-450 (CYP17) in rat Leydig cells. Biochim Biophys Acta 1171: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Nikula H, Huhtaniemi I (1989) Effects of protein kinase C activation on cyclic AMP and testosterone production of rat Leydig cells in vitro. Acta Endocrinol 121: 327–333

    PubMed  CAS  Google Scholar 

  • Nishihara M, Winters CA, Buczko E, Waterman MR, Dufau ML (1988) Hormonal regulation of rat Leydig cell cytochrome P450,7a mRNA levels and characterization of a partial length rat P450,7. cDNA. Biochem Biophys Res Commun 154: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Nistal M, Paniagua R, Regardera J, Santamaria L, Amat P (1986) A quantitative morphological study of human Leydig cells from birth to adulthood. Cell Tissue Res 246: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Noulin JF, Joffre M (1993a) Cyclic AMP- and calcium-activated chloride currents in Leydig cells isolated from mature rat testis. Arch Int Physiol Biochim Biophys 101: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Noulin JF, Joffre M (1993b) Characterization and cyclic AMP-dependence of a hyperpolarization-activated chloride conductance in Leydig cells from mature rat testis. J Membr Biol 133: 1–15

    PubMed  CAS  Google Scholar 

  • Nozu K, Dufau ML, Catt KJ (1981) Estradiol receptor-mediated regulation of steroidogenesis in gonadotropin-desensitized Leydig cells. J Biol Chem 256: 1915–1922

    PubMed  CAS  Google Scholar 

  • O’Donnell L, Stanton PG, Wreford NG, Robertson DM, McLachlan RI (1996) Inhibition of 5areductase activity impairs the testosterone-dependent restoration of spermiogenesis in adult rats. Endocrinology 137: 2703–2710

    Article  Google Scholar 

  • Okuda Y, Bardin CW, Hodgskin LR, Morris PL (1995) Interleukins-la and -1 ß regulate interleukin-6 expression in Leydig and Sertoli cells. Rec Prog Horm Res 50: 367–372

    PubMed  CAS  Google Scholar 

  • O’Leary P, Jackson AE, Averill S, de Kretser DM (1986) The effects of ethane dimethane sulphonate ( EDS) on bilaterally cryptorchid rat testes. Mol Cell Endocrinol 45: 183–190

    Google Scholar 

  • Orava M, Cantell K, Vihko R (1985) Human leukocyte interferon inhibits human chorionic gonadotropin stimulated testosterone production by porcine Leydig cells in culture. Biochem Biophys Res Commun 127: 809–815

    Article  PubMed  CAS  Google Scholar 

  • Orava M, Voutilainen R, Vihko R (1989) Interferon-y inhibits steroidogenesis and accumulation of mRNA of the steroidogenic enzymes, P4505cc and P450c17 in cultured porcine Leydig cells. Mol Endocrinol 3: 887–894

    Article  PubMed  CAS  Google Scholar 

  • Orth J, Christensen AK (1977) Localization of 125I-labeled FSH in the testes of hypophysectomized rats by autoradiography at the light and electron microscope levels. Endocrinology 101: 262–278

    Article  PubMed  CAS  Google Scholar 

  • Padron Duran RS (1985) Respuesta testicular a diferentes dosis de gonadotropina corionica humana en hombres normales [Testicular response to various doses of human chorionic gonadotropin in normal men]. Rev Invest Clin 37: 17–19

    PubMed  CAS  Google Scholar 

  • Pandey KN, Pavlou SN, Kovacs WJ, Inagami T (1986) Atrial natriuretic factor regulates steroidogenic responsiveness and cyclic nucleotide levels in mouse Leydig cells in vitro. Biochem Biophys Res Commun 138: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Paniagua R, Amat P, Nistal M, Martin A (1986) Ultrastructure of Leydig cells in human ageing testis. J Anat 146: 173–183

    PubMed  CAS  Google Scholar 

  • Papadopoulos V (1991) Identification and purification of a human Sertoli cell-secreted protein (hSCSP-80) stimulating Leydig cell steroid biosynthesis. J Clin Endocrinol Metab 72: 1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos V (1993) Peripheral-type benzo-diazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr Rev 14: 222–240

    PubMed  CAS  Google Scholar 

  • Payne AH, Sha L (1991) Multiple mechanisms for regulation of 3[3-hydroxysteroid dehydrogenase/A5–A4-isomerase, 17a-hydroxylase/C17_20 lyase cytochrome P450, and cholesterol side-chain cleavage P450 messenger ribonucleic acid levels in primary cultures of mouse Leydig cells. Endocrinology 129: 1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Payne AH, Youngblood GL (1995) Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod 52: 217–225

    Article  PubMed  CAS  Google Scholar 

  • Payne AH, Kelch RP, Musich SS, Halpern ME (1976) Intratesticular site of aromatization in the human. J Clin Endocrinol Metab 42: 1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Pedersen RC (1984) Polypeptide activators of cholesterol side-chain cleavage. Endocr Res 10: 533–561

    Article  PubMed  CAS  Google Scholar 

  • Pedersen RC (1987) Steroidogenesis activator polypeptide (SAP) in the rat ovary and testis. J Steroid Biochem 27: 731–735

    Article  PubMed  CAS  Google Scholar 

  • Pelliniemi LJ, Niemi M (1969) Fine structure of the human foetal testis. I. The interstitial tissue. Z Zellforsch 99: 507–522

    Google Scholar 

  • Perrard-Sapori MH, Chatelain PC, Rogemond N, Saez JM (1987) Modulation of Leydig cell functions by culture with Sertoli cells or with Sertoli cell-conditioned medium: effect of insulin, somatomedin-C and FSH. Mol Cell Endocrinol 50: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM, Lakshmi V, Monder C (1989) Corticosteroid 1113-dehydrogenase in rat testis. Endocrinology 125: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Purvis K, Hansson V (1978) Hormonal regulation of Leydig cell function. Mol Cell Endocrinol 12: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Quinn PG, Payne AH (1984) Oxygen-mediated damage of microsomal cytochrome P450 enzymes in cultured Leydig cells. Role in steroidogenic desensitization. J Biol Chem 259: 4130–4135

    Google Scholar 

  • Quinn PG, Dombrausky LJ, Chen Y-DI, Payne AH (1981) Serum lipoproteins increase testosterone production in hCG-desensitized Leydig cells. Endocrinology 109: 1790–1792

    Article  PubMed  CAS  Google Scholar 

  • Raeside JI, Renaud RL (1983) Estrogen and androgen production by purified Leydig cells of mature boars. Biol Reprod 28: 727–733

    Article  PubMed  CAS  Google Scholar 

  • Ramnath HI, Peterson S, Michael AE, Stocco DM, Cooke BA (1997) Modulation of steroidogenesis by chloride ions in MA-10 mouse tumor Leydig cells: roles of calcium, protein synthesis, and the steroidogenic acute regulatory protein. Endocrinology 138: 2308–2314

    Article  PubMed  CAS  Google Scholar 

  • Reddy GP, Prasad M, Sailesh S, Kumar YVK, Reddanna P (1993) Arachidonic acid metabolites as intratesticular factors controlling androgen production. Int J Androl 16: 227–233

    Article  PubMed  Google Scholar 

  • Resko JA, Eik-Nes KB (1966) Diurnal testosterone levels in peripheral plasma of human male subjects. J Clin Endocrinol Metab 26: 573–576

    Article  PubMed  CAS  Google Scholar 

  • Reyes FI, Boroditsky RS, Winter JSD, Faiman C (1974) Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J Clin Endocrinol Metab 38: 612–617

    Google Scholar 

  • Rhéaume E, Lachance Y, Zhao Z-F, Breton N, Dumont M, de Launoit Y, Trudel C, Luu-The V, Simard J, Labrie F (1991) Structure and expression of a new complementary DNA encoding the almost exclusive 3ß-hydroxysteroid dehydrogenase/A5-*A4-isomerase in human adrenals and gonads. Mol Endocrinol 5: 1147–1157

    Article  PubMed  Google Scholar 

  • Rich KA, Kerr JB, de Kretser DM (1979) Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage. Mol Cell Endocrinol 13: 123–135

    Article  PubMed  CAS  Google Scholar 

  • Risbridger GP, Kerr JB, Peake RA, de Kretser DM (1981) An assessment of Leydig cell function after bilateral or unilateral efferent duct ligation: further evidence for local control of Leydig cell function. Endocrinology 109: 1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Risbridger GP, Clements J, Robertson DM, Drummond AE, Muir J, Burger HG, de Kretser DM (1989) Immuno-and bioactive inhibin and inhibin a-subunit expression in rat Leydig cell cultures. Mol Cell Endocrinol 66: 119–122

    Article  PubMed  CAS  Google Scholar 

  • Russell DW, Wilson JD (1994) Steroid 5a-reductase: two genes/two enzymes. Annu Rev Biochem 63: 25–61

    Article  PubMed  CAS  Google Scholar 

  • Russell LD, Amlani SR, Vogl AW, Weber JE (1987) Characterization of filaments within Leydig cells of the rat testis. Am J Anat 178: 231–240

    Article  PubMed  CAS  Google Scholar 

  • Russell LD, Corbin TJ, Ren HP, Amador A, Bartke A, Ghosh S (1992) Structural changes in rat Leydig cells posthypophysectomy: a morphometric and endocrine study. Endocrinology 131: 498–508

    Article  PubMed  CAS  Google Scholar 

  • Ryan KJ, Naftolin F, Reddy V, Flores F, Petro Z (1972) Estrogen formation in the brain. Am J Obstet Gynecol 114: 454–460

    PubMed  CAS  Google Scholar 

  • Santen RJ (1975) Is aromatization of testosterone to estradiol required for inhibition of luteinizing hormone secretion in men? J Clin Invest 56: 1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Santen RJ (1977) Independent effects of testosterone and estradiol on the secretion of gonadotropins in men. In: Troen P, Nankin HR (eds) The testis in normal and infertile men. Raven Press, New York, pp 197–211

    Google Scholar 

  • Santen RJ, Bardin CW (1973) Episodic luteinizing hormone secretion in man. Pulse analysis, clinical interpretation, physiologic mechanisms. J Clin Invest 52: 2617–2628

    Google Scholar 

  • Shenker A, Laue L, Kosugl S, Merendino JJ Jr, Minegishi T, Cutler GB Jr (1993) A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365: 652–654

    Article  PubMed  CAS  Google Scholar 

  • Schulze W, Davidoff MS, Holstein A-F (1987) Are Leydig cells of neural origin? Substance P-like immunoactivity in human testicular tissue. Acta Endocrinol 115: 373–377

    PubMed  CAS  Google Scholar 

  • Schweikert HU, Knauf W, Romalo G, Holler W, Bidlingmaier F, Knorr D (1987) Androgen binding in cultured human fibroblasts from patients with idiopathic hypopadias. Horm Metab Res 19: 497–501

    Article  PubMed  CAS  Google Scholar 

  • Setchell BP, Sharpe RM (1981) The effects of human chorionic gonadotrophin on capillary permeability, extracellular fluid volume and flow of lymph and blood in the testis of rats. J Endocrinol 91: 245–254

    Article  PubMed  CAS  Google Scholar 

  • Setchell BP, Maddocks S, Brooks DE (1994) Anatomy, vasculature, innervation, and fluids of the male reproductive tract. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 1063–1173

    Google Scholar 

  • Shan LX, Hardy MP (1992) Developmental changes in levels of luteinizing hormone receptor and androgen receptor in rat Leydig cells. Endocrinology 131: 1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Shan L, Hardy DO, Catterall JF, Hardy MP (1995) Effects of luteinizing hormone ( LH) and androgen on steady-state levels of messenger ribonucleic acid for LH receptors, androgen receptors, and steroidogenic enzymes in rat Leydig cell progenitors in vivo. Endocrinology 136: 1686–1693

    Google Scholar 

  • Sharpe RM, Cooper I (1984) Intratesticular secretion of a factor(s) with major stimulatory effects on Leydig cell testosterone secretion in vitro. Mol Cell Endocrinol 37: 159–168

    Article  PubMed  CAS  Google Scholar 

  • Sharpe RM, Bartlett JMS, Allenby G (1991) Evidence for the control of testicular interstitial fluid volume in the rat by specific germ cell types. J Endocrinol 128: 359–367

    Article  PubMed  CAS  Google Scholar 

  • Shenker A, Laue L, Kosugi S, Meredino JJ, Minegishi T, Cutler GB (1993) A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365: 652–654

    Article  PubMed  CAS  Google Scholar 

  • Simpson BIB, Risbridger GP, Hedger MP, de Kretser DM (1991) The role of calcium in luteinizing hormone/human chorionic gonadotrophin stimulation of Leydig cell immunoactive inhibin secretion in vitro. Mol Cell Endocrinol 75: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Skinner MK, Fritz IB (1985) Testicular peritubular cells secrete a protein under androgen control that modulates Sertoli cell functions. Proc Natl Acad Sci USA 82: 114–118

    Article  PubMed  CAS  Google Scholar 

  • Stalker A, Hermo L, Antakly T (1989) Covalent affinity labeling, autoradiography, and immunocytochemistry localize the glucocorticoid receptor in rat testicular cells. Am J Anat 186: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Stocco DM, Clark BJ (1997) The role of the steroidogenic acute regulatory protein in steroidogenesis. Steroids 62: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MHF, Cooke BA (1984) Role of calcium in luteinizing hormone releasing hormone ago- nist (ICI 118630) stimulated steroidogenesis in rat Leydig cells. Biochem J 218: 621–624

    PubMed  CAS  Google Scholar 

  • Sullivan MHF, Cooke BA (1985a) Effects of calmodulin and lipoxygenase inhibitors on LH- and LHRH agonist-stimulated steroidogenesis in rat Leydig cells. Biochem J 232: 55–59

    PubMed  CAS  Google Scholar 

  • Sullivan MHF, Cooke BA (1985b) Control and production of leukotriene B4 in rat tumor and testicular Leydig cells. Biochem J 230: 821–824

    PubMed  CAS  Google Scholar 

  • Sullivan MHF, Cooke BA (1986) The role of Ca’ in steroidogenesis in Leydig cells: stimulation of intracellular Ca’ levels by luteinizing hormone, luteinizing hormone releasing hormone agonist and cyclic AMP. Biochem J 236: 45–51

    PubMed  CAS  Google Scholar 

  • Sun YT, Wreford NG, Robertson DM, de Kretser DM (1990) Quantitative cytological studies of spermatogenesis in intact and hypophysectomized rats: identification of androgen-dependent stages. Endocrinology 127: 1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Syed V, Khan SA, Ritzen EM (1985) Stage-specific inhibition of interstitial cell testosterone secretion by rat seminiferous tubules in vitro. Mol Cell Endocrinol 40: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Talbot JA, Rodger RS, Shalet SM, Littley MD, Robertson WR (1990) The pulsatile secretion of bioactive luteinising hormone in normal adult men. Acta Endocrinol 122: 643–650

    PubMed  CAS  Google Scholar 

  • Tan J, Joseph DR, Quarmby VE, Lubahn DB, Sar M, French FS, Wilson EM (1988) The rat androgen receptor primary structure, autoregulation of its messenger ribonucleic acid and immunocytochemical localization of the receptor protein. Mol Endocrinol 2: 1276–1285

    Article  PubMed  CAS  Google Scholar 

  • Teerds KJ, Dorrington JH (1993) Localization of transforming growth factor betal and beta2 during testicular development in the rat. Biol Reprod 48: 40–45

    Article  PubMed  CAS  Google Scholar 

  • Teerds KJ, Closset J, Rommerts FFG, de Rooij DG, Stocco DM, Colenbrander B, Wensing CJG, Hennen G (1989a) Effects of pure FSH and LH preparations on the number and function of Leydig cells in immature hypophysectomized rats. J Endocrinol 120: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Teerds KJ, de Rooij DG, Rommerts FFG, van den Hurk R, Wensing CJG (1989b) Proliferation and differentiation of possible Leydig cell precursors after destruction of the existing Leydig cells with ethane dimethane sulphonate: the role of LH/human chorionic gonadotrophin. J Endocrinol 122: 689–696

    Article  PubMed  CAS  Google Scholar 

  • Teerds KJ, de Rooij DG, Rommerts FFG, van den Hurk R, Wensing CJG (1989c) Stimulation of the proliferation and differentiation of Leydig cell precursors after the destruction of existing Leydig cells with ethane sulphonate ( EDS) can take place in the absence of LH. J Androl 10: 472–477

    Google Scholar 

  • Teerds KJ, Rommerts FF, Dorrington JH (1990) Immunohistochemical detection of transforming growth factor-a in Leydig cells during the development of the rat testis. Mol Cell Endocrinol 69: R1–6

    Article  PubMed  CAS  Google Scholar 

  • Themmen APN, Hoogerbrugge JW, Rommerts FFG, van der Molen HJ (1985) Is cAMP the obligatory second messenger in the action of lutropin on Leydig cell steroidogenesis? Biochem Biophys Res Commun 128: 1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Tilley WD, Marchelli M, Wilson JD, McPhaul MJ (1989) Characterization and expression of acDNA encoding the human androgen receptor. Proc Natl Acad Sci USA 86: 327–331

    Article  PubMed  CAS  Google Scholar 

  • Tinajero JC, Fabbri A, Ciocca DR, Dufau ML (1993) Serotonin secretion from rat Leydig cells. Endocrinology 113: 3026–3029

    Article  Google Scholar 

  • Tsai-Morris CH, Buczko E, Wang W, Xie X-Z, Dufau ML (1991) Structural organization of the rat luteinizing hormone (LH) receptor gene. J Biol Chem 266:1 1 355–11 359

    Google Scholar 

  • Tsuruhara T, Dufau ML, Cigorraga S, Catt KJ (1977) Hormonal regulation of testicular luteinizing hormone receptors. Effects on cyclic AMP and testosterone responses in isolated Leydig cells. J Biol Chem 252: 9002–9009

    Google Scholar 

  • Turner TT, Caplis L, Miller DW (1996) Testicular microvascular blood flow: alteration after Leydig cell eradication and ischemia but not experimental varicocele. J Androl 17: 239–248

    PubMed  CAS  Google Scholar 

  • Tut TG, Ghadessy FJ, Trifiro MA, Pinsky L, Yong EL (1997) Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab 82: 3777–3782

    Article  PubMed  CAS  Google Scholar 

  • van Haren L, Teerds KJ, Ossendorp BC, van Heusden GPH, Orly J, Stocco DM, Wirtz KWA, Rommerts FFG (1992) Sterol carrier protein 2 (non-specific lipid transfer protein) is localized in membranous fractions of Leydig cells and Sertoli cells, but not in germ cells. Biochim Biophys Acta 1124: 288–296

    Article  PubMed  Google Scholar 

  • van Noort M, Rommerts FFG, van Amerongen A, Wirtz KWA (1988) Intracellular redistribution of SCP2 in Leydig cells after hormonal stimulation may contribute to increased pregnenolone production. Biochem Biophys Res Commun 154: 60–65

    Article  PubMed  Google Scholar 

  • van Vorstenbosch CJAHV, Colenbrander B, Wensing CJG, Ramaekers FCS, Vooijs GP (1984) Cytoplasmic filaments in fetal and neonatal pig testis. Eur J Cell Biol 34: 292–299

    PubMed  Google Scholar 

  • Verhoeven G, Cailleau J (1987) A Leydig cell stimulatory factor produced by human testicular tubules. Mol Cell Endocrinol 49: 137–147

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven G, Cailleau J, Damme J, Billiau A (1988) Interleukin-1 stimulates steroidogenesis in cultured rat Leydig cells. Mol Cell Endocrinol 57: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Vihko KK, Huhtaniemi I (1989) A rat seminiferous epithelial factor that inhibits Leydig cell cAMP and testosterone production: mechanism of action, stage-specific secretion and partial characterization. Mol Cell Endocrinol 65: 119–127

    Article  PubMed  CAS  Google Scholar 

  • Vliegen MK, Schlatt S, Weinbauer GF, Bergmann M, Groome NP, Nieschlag E (1993) Localization of inhibin/activin subunits in the testis of adult non-human primates and men. Cell Tissue Res 273: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Wallgren M, Kindahl H, Rodriguez-Martinez H (1993) Alterations in testicular function after endotoxin injection in the boar. Int J Androl 16: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Wang DL, Nagpal ML, Calkins JH, Chang WW, Sigel MM, Lin T (1991a) Interleukin-lß induces interleukin-la messenger ribonucleic acid expression in primary cultures of Leydig cells. Endocrinology 129: 2862–2866

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ascoli M, Segaloff DL (1991b) Multiple luteinizing hormone/chorionic gonadotropin receptor messenger ribonucleic acid transcripts. Endocrinology 129: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Segaloff DL, Ascoli M (1991c) Lutropin/choriogonadotropin down-regulates its receptor by both receptor-mediated endocytosis and a cAMP-dependent reduction in receptor mRNA. J Biol Chem 266: 780–785

    PubMed  CAS  Google Scholar 

  • Warren DW, Pasupuleti V, Lu Y, Platler BW, Horton R (1990) Tumor necrosis factor and interleukin-1 stimulate testosterone secretion in adult male rat Leydig cells in vitro. J Androl 11: 353–360

    PubMed  CAS  Google Scholar 

  • Watanabe N, Inoue H, Fujii-Kuriyama Y (1994) Regulatory mechanisms of cAMP-dependent and cell-specific expression of human steroidogenic cytochrome P450SCC (CYP11A1) gene. Eur J Biochem 222: 825–834

    Article  PubMed  CAS  Google Scholar 

  • Waters BL, Trainer TD (1996) Development of the human fetal testis. Ped Pathol Lab Med 16:9–23 Weinbauer GF, Göckeler E, Nieschlag E (1988) Testosterone prevents complete suppression of spermatogenesis in the gonadotropin-releasing hormone (GnRH) antagonist-treated non-human primate (Macaca fascicularis). J Clin Endocrinol Metab 67: 284–290

    Google Scholar 

  • Welsh TH, Bambino TH, Hsueh AJ (1982) Mechanism of glucocorticoid-induced suppression of testicular androgen biosynthesis in vitro. Biol Reprod 27: 1138–1146

    Article  PubMed  CAS  Google Scholar 

  • West AP, Lopez-Ruiz MP, Cooke BA (1991) Differences in LH receptor down-regulation between rat and mouse Leydig cells: effects of 3‘,5’-cyclic AMP and phorbol esters. Mol Cell Endocrinol 77: R7 - R11

    Article  PubMed  CAS  Google Scholar 

  • Wilson E, Smith AA (1975) Localization of androgen receptors in rat testis: biochemical studies. In: French FS, Hansson V, Ritzén EM, Nayfeh SN (eds) Hormonal regulation of spermatogenesis. Plenum Press, New York, pp 281–286

    Chapter  Google Scholar 

  • Wing T-Y, Ewing LL, Zegeye B, Zirkin BR (1985) Restoration effects of exogenous luteinizing hormone on the testicular steroidogenesis and Leydig cell ultrastructure. Endocrinology 117: 1779–1787

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Hales DB (1993) The role of tumor necrosis factor-a in the regulation of mouse Leydig cell steroidogenesis. Endocrinology 132: 2438–2444

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S-I, Kunisada T, Fujimoto T, Nishikawa S-I (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113: 689–699

    PubMed  CAS  Google Scholar 

  • Yu J, Dolter KE (1997) Production of activin A and its roles in inflamation and hematopoiesis. Cyto Cell Mol Ther 3: 169–177

    CAS  Google Scholar 

  • Zhang F-P, Hämäläinen T, Kaipia A, Pakarinen P, Huhtaniemi I (1994) Ontogeny of luteinizing hormone receptor gene expression in the rat testis. Endocrinology 134: 2206–2213

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Han XG, Mellon SH, Hall PF (1996) Expression of the gene for cytochrome P-450 17ahydroxylase/C17–20 lyase (CYP17) in porcine Leydig cells: identification of a DNA sequence that mediates cAMP response. Biochim Biophys Acta 1307: 73–82

    Article  PubMed  Google Scholar 

  • Zipf WB, Payne AH, Kelch RP (1978) Prolactin, growth hormone and luteinizing hormone in the maintenance of testicular luteinizing hormone receptors. Endocrinology 103: 595–600

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hedger, M.P., de Kretser, D.M. (2000). Leydig Cell Function and Its Regulation. In: McElreavey, K. (eds) The Genetic Basis of Male Infertility. Results and Problems in Cell Differentiation, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48461-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48461-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08554-3

  • Online ISBN: 978-3-540-48461-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics