Skip to main content

Haptic Virtual Fixtures for Robot-Assisted Manipulation

  • Conference paper

Part of the Springer Tracts in Advanced Robotics book series (STAR,volume 28)

Abstract

Haptic virtual fixtures are software-generated force and position signals applied to human operators in order to improve the safety, accuracy, and speed of robot-assisted manipulation tasks. Virtual fixtures are effective and intuitive because they capitalize on both the accuracy of robotic systems and the intelligence of human operators. In this paper, we discuss the design, analysis, and implementation of two categories of virtual fixtures: guidance virtual fixtures, which assist the user in moving the manipulator along desired paths or surfaces in the workspace, and forbidden-region virtual fixtures, which prevent the manipulator from entering into forbidden regions of the workspace. Virtual fixtures are analyzed in the context of both cooperative manipulation and telemanipulation systems, considering issues related to stability, passivity, human modeling, and applications.

Keywords

  • Virtual Environment
  • Admittance Control
  • Haptic Device
  • Haptic Interface
  • Motion Constraint

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work is supported by National Science Foundation grants #ITR-0205318 and #IIS-0347464.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-48113-3_5
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-48113-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aarno, S. Ekvall, and D. Kragić. Adaptive virtual fixtures for machine-assisted teleoperation tasks. In Proc. IEEE Int’l. Conf. on Robotics and Automation, pages 1151–1156, 2005.

    Google Scholar 

  2. J. J. Abbott. Virtual Fixtures for Bilateral Telemanipulation. PhD thesis, Department of Mechanical Engineering, The Johns Hopkins University, 2005.

    Google Scholar 

  3. J. J. Abbott and A. M. Okamura. Effects of position quantization and sampling rate on virtual-wall passivity. IEEE Trans. Robotics, 21(5):952–964, 2005.

    CrossRef  Google Scholar 

  4. J. J. Abbott and A. M. Okamura. Pseudo-admittance bilateral telemanipulation with guidance virtual fixtures. In Proc. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, 2006.

    Google Scholar 

  5. J. J. Abbott and A. M. Okamura. Stable forbidden-region virtual fixtures for bilateral telemanipulation. ASME J. Dynamic Systems, Measurement, and Control, In Press.

    Google Scholar 

  6. R. J. Adams and B. Hannaford. Stable haptic interaction with virtual environments. IEEE Trans. Robotics and Automation, 15(3):465–474, 1999.

    CrossRef  Google Scholar 

  7. A. Bettini, P. Marayong, S. Lang, A. M. Okamura, and G. D. Hager. Vision-assisted control for manipulation using virtual fixtures. IEEE Trans. Robotics, 20(6):953–966, 2004.

    CrossRef  Google Scholar 

  8. J. E. Colgate and G. G. Schenkel. Passivity of a class of sampled-data systems: Application to haptic interfaces. J. Robotic Systems, 14(1):37–47, 1997.

    CrossRef  Google Scholar 

  9. M. Dewan, P. Marayong, A. M. Okamura, and G. D. Hager. Vision-based assistance for ophthalmic micro-surgery. In Proc. Int’l. Conf. on Medical Image Computing and Computer-Assisted Intervention, pages 49–57, 2004.

    Google Scholar 

  10. D. Feygin, M. Keehner, and F. Tendick. Haptic guidance: Experimental evaluation of a haptic training method for a perceptual motor skill. In Proc. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pages 40–47, 2002.

    Google Scholar 

  11. R. B. Gillespie, M. S. O’Modhrain, P. Tang, D. Zaretzky, and C. Pham. The virtual teacher. In Proc. ASME Int’l. Mechanical Engineering Congress and Exposition, 1998.

    Google Scholar 

  12. G. S. Guthart and J. K. Salisbury. The Intuitive™ telesurgery system: Overview and application. In Proc. IEEE Int’l. Conf. on Robotics and Automation, pages 618–621, 2000.

    Google Scholar 

  13. Intuitive Surgical. http://www.intuitivesurgical.com.

    Google Scholar 

  14. T. Itoh, K. Kosuge, and T. Fukuda. Human-machine cooperative telemanipulation with motion and force scaling using task-oriented virtual tool dynamics. IEEE Trans. Robotics and Automation, 16(5):505–516, 2000.

    CrossRef  Google Scholar 

  15. L. D. Joly and C. Andriot. Imposing motion constraints to a force reflecting telerobot through real-time simulation of a virtual mechanism. In Proc. IEEE Int’l. Conf. on Robotics and Automation, pages 357–362, 1995.

    Google Scholar 

  16. D. Kragic, P. Marayong, M. Li, A. M. Okamura, and G. D. Hager. Human-machine collaborative systems for microsurgical applications. Int’l. J. Robotics Research, 24(9):731–741, 2005.

    CrossRef  Google Scholar 

  17. A. B. Kuang, S. Payandeh, B. Zheng, F. Henigman, and C. L. MacKenzie. Assembling virtual fixtures for guidance in training environments. In Proc. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, 2004.

    Google Scholar 

  18. M. Li, A. Kapoor, and R. H. Taylor. A constrained optimization approach to virtual fixtures. In Proc. IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages 2924–2929, 2005.

    Google Scholar 

  19. M. Li and A. M. Okamura. Recognition of operator motions for real-time assistance using virtual fixtures. In Proc. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pages 125–131, 2003.

    Google Scholar 

  20. M. Li and R. H. Taylor. Spatial motion constraints in medical robot using virtual fixtures generated by anatomy. In Proc. IEEE Int’l. Conf. on Robotics and Automation, pages 1270–1275, 2004.

    Google Scholar 

  21. P. Y. Li and R. Horowitz. Passive velocity field control of mechanical manipulators. IEEE Trans. Robotics and Automation, 15(4):751–763, 1999.

    CrossRef  Google Scholar 

  22. P. Marayong, G. D. Hager, and A. M. Okamura. Effect of hand dynamics on virtual fixtures for compliant human-machine interfaces. In Proc. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, 2006.

    Google Scholar 

  23. P. Marayong and A. M. Okamura. Speed-accuracy characteristics of human-machine cooperative manipulation using virtual fixtures with variable admittance. Human Factors, 46(3):518–532, 2004.

    CrossRef  Google Scholar 

  24. A. Micaelli, C. Bidard, and C. Andriot. Decoupling control based on virtual mechanisms for telemanipulation. In Proc. IEEE Int’l. Conf. on Robotics and Automation, pages 1924–1931, 1998.

    Google Scholar 

  25. C. A. Moore, M. A. Peshkin, and J. E. Colgate. Cobot implementation of virtual paths and 3-D virtual surfaces. IEEE Trans. Robotics and Automation, 19(2):347–351, 2003.

    CrossRef  Google Scholar 

  26. S. Park, R. D. Howe, and D. F. Torchiana. Virtual fixtures for robotic cardiac surgery. In Proc. Int’l. Conf. on Medical Image Computing and Computer-Assisted Intervention, pages 1419–1420, 2001.

    Google Scholar 

  27. Y. S. Park, H. Kang, T. F. Ewing, E. L. Faulring, J. E. Colgate, and M. A. Peshkin. Enhanced teleoperation for D & D. In Proc. IEEE Int’l. Conf. on Robotics and Automation, pages 3702–3707, 2004.

    Google Scholar 

  28. S. Payandeh and Z. Stanisic. On application of virtual fixtures as an aid for telemanipulation and training. In Proc. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pages 18–23, 2002.

    Google Scholar 

  29. L. Rosenberg. Virtual fixtures: Perceptual tools for telerobotic manipulation. In Proc. IEEE Virtual Reality Int’l. Symposium, pages 76–82, 1993.

    Google Scholar 

  30. J. Roy, D. L. Rothbaum, and L. L. Whitcomb. Haptic feedback augmentation through position based adaptive force scaling: Theory and experiment. In Proc. IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages 2911–2919, 2002.

    Google Scholar 

  31. C. Sayers. Remote Control Robotics. Springer-Verlag, New York, 1999.

    Google Scholar 

  32. SensAble Technologies. http://www.sensable.com.

    Google Scholar 

  33. R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi. Steady-hand robotic system for microsurgical augmentation. Int’l. J. Robotics Research, 18(12):1201–1210, 1999.

    CrossRef  Google Scholar 

  34. N. Turro, O. Khatib, and E. Coste-Maniere. Haptically augmented teleoperation. In Proc. IEEE Int’l. Conf. on Robotics and Automation, pages 386–392, 2001.

    Google Scholar 

  35. M. Wu, J. J. Abbott, and A. M. Okamura. Effect of velocity on human force control. In Proc. Joint EuroHaptics Conf. and Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems (World Haptics), pages 73–79, 2005.

    Google Scholar 

  36. C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for haptic display. In Proc. IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages 146–151, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abbott, J.J., Marayong, P., Okamura, A.M. (2007). Haptic Virtual Fixtures for Robot-Assisted Manipulation. In: Thrun, S., Brooks, R., Durrant-Whyte, H. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48113-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48113-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48110-2

  • Online ISBN: 978-3-540-48113-3

  • eBook Packages: EngineeringEngineering (R0)