Skip to main content

The GL1 Gene and the Trichome Developmental Pathway in Arabidopsis thaliana

  • Conference paper

Part of the Results and Problems in Cell Differentiation book series (RESULTS,volume 20)

Abstract

Developmental decisions in organisms as diverse as bacteriophage λ, Saccaromyces cerevisia, Drosophila melanogaster, Caenorabditis elegans, and Arabidopsis thaliana are regulated by transcription factors. In multicellular organisms, these transcription factors ultimately control the expression of genes responsible for the differentiation of various cell types. During the course of evolution, a relatively limited group of DNA-binding domains have diversified to take on a wide range of transcriptional regulation functions. One such conserved DNA-binding motif is present in the myb family of transcriptional activators, which has been identified in a wide variety of organisms (reviewed in Löscher and Eisenman 1990; Graf 1992).

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bang AG, Posakony JW (1992) The Drosophila gene Hairless encodes a novel basic protein that controls alternative cell fates in adult sensory organ development. Genes Dev 6: 1752–1769

    CrossRef  PubMed  CAS  Google Scholar 

  • Denfey PN, Chua N-H (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250: 959–966

    CrossRef  Google Scholar 

  • Biesalski HK, Doepner G, Tzimas G, Gamulin V, Schroder HC, Batel R, Nau H, Muller WEG (1992) Modulation of myb gene expression in sponges by retinoic acid. Oncogene 7: 1765–1774

    PubMed  CAS  Google Scholar 

  • Campuzano S, Modolell J (1992) Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genet 8: 202–208

    PubMed  CAS  Google Scholar 

  • Chandler VL, Radicella JP, Robbins J, Chen J, Turks D (1989) Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B using R genomic sequences. Plant Cell 1: 1175–1183

    PubMed  CAS  Google Scholar 

  • Coe EH, Neuffer MG, Hoisington DA (1988) The genetics of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement. Agronomy Monograph 18, 3rd edn. American Society of Agronomy, Madison, pp 81–258

    Google Scholar 

  • Feenstra WJ (1978) Contiguity of linkage groups I and IV as revealed by linkage relationship of two newly isolated markers dis-1 and dis-2. Arabidopsis Inf Sery 15: 35–38

    Google Scholar 

  • Foos G, Grimm S, Klempnauer K-H (1992) Functional antagonism between members of the myb family: B-myb inhibits v-myb-induced gene activation. EMBO J 11: 4619–4629

    PubMed  CAS  Google Scholar 

  • Frampton J, Leutz A, Gibson T, Graf T (1989) DNA-binding domain ancestry. Nature 342: 134

    CrossRef  PubMed  CAS  Google Scholar 

  • Goff SA, Cone KC, Fromm ME (1991) Identification of functional domains in the maize transcriptional activator CI: comparison of wild-type and dominant inhibitor proteins. Genes Dev 5: 298–309

    CrossRef  PubMed  CAS  Google Scholar 

  • Goff SA, Cone KC, Chandler VL (1992) Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for direct functional interaction between two classes of regulatory proteins. Genes Dev 6: 864–875

    CrossRef  PubMed  CAS  Google Scholar 

  • Graf T (1992) Myb: a transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr Opinion Genet Dev 2: 249–255

    CrossRef  CAS  Google Scholar 

  • Grotewold E, Athma P, Peterson T (1991) Alternatively spliced products of the maize P gene encode proteins with homology to the DNA binding domain of myb-like transcription factors. Proc Natl Acad Sci USA 88: 4587–4591

    CrossRef  PubMed  CAS  Google Scholar 

  • Harden JW (1979) Patterns of variation in foliar trichomes of eastern North American Quercus. Am J Bot 66: 576–585

    CrossRef  Google Scholar 

  • Haughn GW, Somerville CR (1988) Genetic control of morphogenesis in Arabidopsis. Dev Genet 9: 73–89

    CrossRef  Google Scholar 

  • Held LI (1991) Bristle patterning in Drosophila. BioEssays 13: 633–640

    Google Scholar 

  • Herman PL, Marks MD (1989) Trichome development in Arabidopsis thaliana. II. Isolation and complementation of the GLABROUS! gene. Plant Cell 1: 1051–1055

    PubMed  CAS  Google Scholar 

  • Jackson D, Culianez-Macia F, Prescott AG, Roberts K, Martin C (1991) Expression patterns of myb genes from Antirrhinum flowers. Plant Cell 3: 115–125

    PubMed  CAS  Google Scholar 

  • Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41 (3): 233–258

    CrossRef  Google Scholar 

  • Katzen AL, Kornberg TB, Bishop JM (1985) Isolation of the proto-oncogene c-myb from D. melanogaster. Cell 41: 449–456

    CrossRef  PubMed  CAS  Google Scholar 

  • Klein TM, Roth BA, Fromm ME (1989) Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles. Proc Natl Acad Sic USA 86: 6681–6685

    CrossRef  CAS  Google Scholar 

  • Koornneef M (1981) The complex syndrome of ttg mutants. Arabidopsis Inf Sery 18: 45–51

    Google Scholar 

  • Koornneef M, Dellaert SWM, van der Veen JH (1982) EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana ( L.) Heynh. Mutat Res 93: 109–123

    Google Scholar 

  • Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74: 265–272

    Google Scholar 

  • Lersten NR, Curtis JD (1992) Foliar anatomy of Polygonum (Polygonaceae): survey of epidermal and selected internal structures. Plant Syst Evol 182: 71–106

    CrossRef  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Anthocyanin production in dicots activated by maize anthocyanin-specific regulators, R and Cl. Science 258: 1773–1775

    CrossRef  PubMed  CAS  Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcription factors and contains the myc homology region. Proc Natl Acad Sci USA 86: 7092–7096

    Google Scholar 

  • Löscher B, Eisenman RN (1990) New light on Myc and Myb. Part II. Myb. Genes Dev 4: 2235–2241

    Google Scholar 

  • Löscher B, Eisenman RN (1992) Mitosis-specific phosphorylation of the nuclear oncoprotein myc and myb. Cell Biol 118: 775–784

    CrossRef  Google Scholar 

  • Löscher B, Christenson E, Litchfield DW, Krebs EG, Eisenman RN (1990) Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 344: 517–522

    CrossRef  Google Scholar 

  • Marks MD, Esch JJ (1992) Trichome formation in Arabidopsis as a genetic model for studying cell expansison. Current Top Plant Biochem Physiol 11: 131–142

    Google Scholar 

  • Marks MD, Feldmann KA (1989) Trichome development in Arabidopsis thaliana. I. T-DNA tagging of the GLABROUS! gene. Plant Cell 1: 1043–1050

    PubMed  CAS  Google Scholar 

  • Marks MD, Esch J, Herman P, Sivakumaran S, Oppenheimer D (1991) A model for cell-type determination and differentiation in plants. In: Jenkins GI, Schuch W (eds) Molecular biology of plant development. The Company of Biologists Limited, Cambridge, pp 77–87

    Google Scholar 

  • Marocco A, Wissenbach M, Becker D, Paz-Ares J, Saedler H, Salamini F (1989) Multiple genes are transcribed in Hordeum vulgare and Zea mays that carry the DNA binding domain of the myb oncoproteins. Mol Gen Genet 210: 183–187

    CrossRef  Google Scholar 

  • Matzke MA, Matzke AJM (1990) Gene interactions and epigenetic variation in transgenic plants. Dev Genet 11: 214–223

    CrossRef  CAS  Google Scholar 

  • McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: an abscisic acid insensitive mutant of maize. Plant Cell 1: 523–532

    PubMed  CAS  Google Scholar 

  • Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA, Pietryga DW, Scott WJJ, Potter SS (1991) A functional c-myb gene is required for normal nurine fetal hepatic hematopoiesis. Cell 65: 677–689

    CrossRef  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289

    PubMed  CAS  Google Scholar 

  • Nomura N, Takahashi M, Matsui M, Ishii S, Date T, Sasamoto S, Ishizaki R (1988) Isolation of human c-DNA clones of myb-related genes, A-myb and B-myb. Nucleic Acids Res 16: 11075–11089

    Google Scholar 

  • Oppenheimer DG, Herman PL, Esch J, Sivakumaran S, Marks MD (1991) A mybrelated gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67: 483–493

    CrossRef  PubMed  CAS  Google Scholar 

  • Oppenheimer DG, Esch J, Marks MD (1992) Molecular genetics of Arabidopsis trichome development. In: Verma DPS (ed) Control of plant gene expression. CRC Press, Boca Raton, pp 275–286

    Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6 (12): 3553–3558

    PubMed  CAS  Google Scholar 

  • Peters CWB, Sipel AE, Vingron M, Klempnauer KH (1987) Drosophila and vertebrate myb proteins share two conserved regions, one of which functions as a DNA-binding domain. EMBO J 6: 3085–3090

    Google Scholar 

  • Ptashne M, Gann AF (1990) Activators and targets. Nature 346: 329–331

    CrossRef  PubMed  CAS  Google Scholar 

  • Rollins RC, Banerjee UC (1976) Trichomes in studies of the Crucifereae. In: Vaughan JG, Macleod AJ, Jones BMG (eds) The biology and chemistry of the Cruciferae. Academic Press, New York, pp 145–166

    Google Scholar 

  • Roth BA, Goff SA, Klein TM, Fromm ME (1991) Cl-and R-dependent expression of the maize Bzl gene requires sequences with homology to mammalian myb and myc binding sites. Plant Cell 3: 317–325

    Google Scholar 

  • Roussel M, Saule S, Lagrou C, Rommens C, Beug H, Graf T, Stehelin D (1979) Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 281: 452–455

    CrossRef  PubMed  CAS  Google Scholar 

  • Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ, Ishii S (1989) Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci USA 86: 5758–5762

    CrossRef  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Urao T, Koizumi M (1992) Nucleotide sequence of a gene from Arabidopsis thaliana encoding a myb homologue. Plant Mol Biol 19: 493–499

    CrossRef  PubMed  CAS  Google Scholar 

  • Stern C (1954) Two or three bristles. Am Sci 42: 213–247

    Google Scholar 

  • Sternberg PW, Horvitz HR (1984) The genetic control of cell lineage during nematode development. Annu Rev Genet 18: 489–524

    CrossRef  PubMed  CAS  Google Scholar 

  • Stober-Grasser U, Brydolf B, Bin X, Grasser F, Firtel RA, Lipsick JS (1992) Dictyostelium MYB: evolution of a DNA-binding domain. Oncogene 7: 589–596

    Google Scholar 

  • Styles ED (1970) Functionally duplicate genes conditioning anthocyanin formation in maize. Can J Genet Cytol 12: 397

    Google Scholar 

  • Theobald WL, Krahulik JL, Rollins RC (1979) Trichome description and classification. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol I. Clarendon Press, Oxford, pp 40–53

    Google Scholar 

  • Thomson PM, Mohlenbrock RH (1979) Foliar trichomes of Quercus subgenus Quercus in the eastern United States. J Arnold Arb Hary Univ 60: 350–366

    Google Scholar 

  • Tice-Baldwin K, Fink GR, Arndt KT (1989) BAST has an Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246: 931–935

    Google Scholar 

  • Uphof JCT (1962) Plant hairs. Encyclopedia of Plant Anatomy. Borntraeger, Berlin, pp 148–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larkin, J.C., Oppenheimer, D.G., Marks, M.D. (1994). The GL1 Gene and the Trichome Developmental Pathway in Arabidopsis thaliana . In: Nover, L. (eds) Plant Promoters and Transcription Factors. Results and Problems in Cell Differentiation, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48037-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48037-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22304-8

  • Online ISBN: 978-3-540-48037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics