Mutation Accumulation In Vivo and the Importance of Genome Stability in Aging and Cancer

  • Martijn E. T. Dollé
  • Heidi Giese
  • Harry van Steeg
  • Jan Vijg
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 29)


Somatic mutations are generally considered as the major cause of cancer. This can be derived from various observations, including the actual presence of mutations in the tumor genome in genes thought to be critically involved in tumor initiation and/or progression, such as TP53,KRAS, and RB1 (Lengauer et al. 1998). Both exogenous (Greenblatt et al. 1994) and endogenous (Jackson et al. 1998) mutagenic mechanisms have been implicated in the induction of these mutations. Modeling of such gene defects into the mouse genome often results in accelerated tumorigenesis (Vijg and van Steeg 1998), confirming the critical role of specific mutations as a cause of cancer. Other indirect evidence involves the general observation that most, if not all, mutagens are also carcinogens and that heritable mutations in genes controlling genome stability pathways often confer a high cancer susceptibility (Vijg and van Steeg 1998).


Somatic Mutation Nucleotide Excision Repair Genome Stability Xeroderma Pigmentosum Mutation Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertini RJ, Hayes RB (1997) Somatic cell mutations in cancer epidemiology. IARC Sci Publ 142: 159–184PubMedGoogle Scholar
  2. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life span by introduction of telomerase into normal human cells. Science 279: 349–352PubMedCrossRefGoogle Scholar
  3. Boerrigter METI, Dollé MET, Martus H-J, Gossen JA, Vijg J (1995) Plasmid-based transgenic mouse model for studying in vivo mutations. Nature 377: 657–659PubMedCrossRefGoogle Scholar
  4. Bootsma D, Kraemer KH, Cleaver J, Hoeijmakers JHJ (1998) Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. In: Vogelstein B, Kinzler KW (eds) Genetic basis of human cancer, Chapt 13. McGraw-Hill, New York, pp 245–274Google Scholar
  5. Bronson RT, Lipman RD (1991) Reduction in rate of occurrence of age-related lesions in dietary restricted laboratory mice. Growth Dev Aging 55: 169–184PubMedGoogle Scholar
  6. Burnet FM (1974) Intrinsic mutagenesis: a genetic approach to aging. Wiley, New York Campisi J (1996) Replicative senescence: an old lives’ tale? Cell 84: 497–500Google Scholar
  7. Cleaver JE, Kraemer KH (1995) In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. 7th edn., vol III. McGraw-Hill New York, pp 43934419Google Scholar
  8. Curtis H (1963) Biological mechanisms underlying the aging process. Science 141: 686–694PubMedCrossRefGoogle Scholar
  9. De Vries A, Van Oostrom CThM, Hofhuis FMA, Dortant PM, Berg RJW, de Gruijl FR, Wester PW, Van Kreijl CF, Capel PJA, Van Steeg H, Verbeek SJ (1995) Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377: 169–173Google Scholar
  10. De Vries A, Van Oostrom CThM, Dortant PM, Beems RB, Van Kreijl CF, Capel PJA, Van Steeg H (1997) Spontaneous liver tumours and benzo[a)pyrene-induced lymphomas in XPAdeficient mice. Mol Carcinogen 19: 46–53Google Scholar
  11. Dollé MET, Giese H, Hopkins CL, Martus H-J, Hausdorff JM, Vijg J (1997) Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nature Genet 17: 431–434PubMedCrossRefGoogle Scholar
  12. Failla G (1958) The aging process and carcinogenesis. Ann NY Acad Sci 71: 1124–1135PubMedCrossRefGoogle Scholar
  13. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767PubMedCrossRefGoogle Scholar
  14. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington DCGoogle Scholar
  15. Fukuchi K, Martin GM, Monnat RJ Jr (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci USA 86: 5893–5897PubMedCrossRefGoogle Scholar
  16. Giese H, Dollé MET, Hezel A, van Steeg H, Vijg J (1999) Accelerated accumulation of somatic mutations in mice deficient in the nucleotide excision repair gene XPA. Oncogene 18: 1257–1260PubMedCrossRefGoogle Scholar
  17. Gossen JA, Vijg J (1993a) A selective system for LacZ - phage using a galactose-sensitive E. coli host. Biotechniques 14: 326–330PubMedGoogle Scholar
  18. Gossen JA, Vijg J (1993b) Transgenic mice as model systems for studying gene mutations in vivo. Trends Genet 9: 27–31PubMedCrossRefGoogle Scholar
  19. Gossen JA, de Leeuw WJF, Tan CHT, Lohman PHM, Berends F, Knook DL, Zwarthoff EC, Vijg J (1989) Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying gene mutations in vivo. Proc Natl Acad Sci USA 86: 7971–7975PubMedCrossRefGoogle Scholar
  20. Gossen JA, de Leeuw WJF, Molijn AC, Vijg J (1993) Plasmid rescue from transgenic mouse DNA using Lad repressor protein conjugated to magnetic beads. Biotechniques 14: 624–629PubMedGoogle Scholar
  21. Gossen JA, Martus HJ, Wei JY, Vijg J (1995) Spontaneous and X-ray-induced deletion mutations in a lacZ plasmid-based transgenic mouse model. Mutat Res 331: 89–97PubMedCrossRefGoogle Scholar
  22. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 48554878Google Scholar
  23. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265: 103–106PubMedCrossRefGoogle Scholar
  24. Hart RW, D’Ambrosio SM, Ng KJ, Modak SP (1979) Longevity, stability and DNA repair. Mech Aging Dev 9: 203–223PubMedCrossRefGoogle Scholar
  25. Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266:1821–1827 Hoeijmakers JHJ (1994) Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur J Cancer 30A: 1912–1921CrossRefGoogle Scholar
  26. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7PubMedCrossRefGoogle Scholar
  27. Jackson AL, Chen R, Loeb LA (1998) Induction of microsatellite instability by oxidative DNA damage. Proc Natl Acad Sci USA 95: 12468–12473PubMedCrossRefGoogle Scholar
  28. Kohler SW, Provost GS, Fieck A, Kretz PL, Bullock WO, Sorge JA, Putman DL, Short JM (1991) Spectra of spontaneous and mutagen-induced mutations in the Lad gene in transgenic mice. Proc Natl Acad Sci USA 88: 7958–7962PubMedCrossRefGoogle Scholar
  29. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396: 643–649PubMedCrossRefGoogle Scholar
  30. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331Google Scholar
  31. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51: 3075–3079PubMedGoogle Scholar
  32. Lowe SW, Schmitt SW, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849Google Scholar
  33. Martin GM (1977) Cellular aging–postreplicative cells. A review (part II) Am J Pathol 89: 513–530PubMedGoogle Scholar
  34. Martin GM (1991) Genetic and environmental modulations of chromosomal stability: their roles in aging and oncogenesis. Ann NY Acad Sci 621: 401–417PubMedCrossRefGoogle Scholar
  35. Murakami Y, Sekiya T (1998) Accumulation of genetic alterations and their significance in each primary human cancer and cell line. Mutat Res 400: 421–437PubMedCrossRefGoogle Scholar
  36. Peto R, Roe FJ, Lee PN, Levy L, Clack J (1975) Cancer and aging in mice and men. Br J Cancer 32: 411–426PubMedCrossRefGoogle Scholar
  37. Ramsey MJ, Moore II DH, Briner JF, Lee DA, Olsen LA, Senft JR, Tucker JD (1995) The effects of age and life style factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat Res 338: 95–106PubMedCrossRefGoogle Scholar
  38. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712PubMedCrossRefGoogle Scholar
  39. Shiloh Y, Rotman G (1996) Ataxia-telangiectasia and the ATM gene: linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints. J Clin Immunol 16: 254–260PubMedCrossRefGoogle Scholar
  40. Skopek TR, Kort KL, Marino DR (1995) Relative sensitivity of the endogenous hprt gene and lad transgene in ENU-treated Big Blue B6C3F1 mice. Environ Mol Mutagen 26: 9–15PubMedCrossRefGoogle Scholar
  41. Smith ML, Fornace AJ Jr (1995) Genomic instability and the role of p53 mutations in cancer cells. Curr Opin Oncol 7: 69–75PubMedGoogle Scholar
  42. Strehler BL, Freeman MR (1980) Randomness, redundancy and repair: roles and relevance to biological aging. Mech Aging Dev 14: 15–38PubMedCrossRefGoogle Scholar
  43. Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223–232Google Scholar
  44. Szilard L (1959) On the nature of the aging process. Proc Natl Acad Sci USA 45: 35–45CrossRefGoogle Scholar
  45. Tao KS, Urlando C, Heddle JA (1993) Comparison of somatic mutation in a transgenic versus host locus. Proc Natl Acad Sci USA 90: 10681–10685PubMedCrossRefGoogle Scholar
  46. Van Gool AJ, Van der Horst GTJ, Citterio E, Hoeijmakers JHJ (1997) Cockayne syndrome: defective repair of transcription? EMBO J 16: 4155–4162PubMedCrossRefGoogle Scholar
  47. Van Oostrom CThM, Boeve M, van den Berg J, de Vries A, Dollé MET, Beems RB, van Kreijl CF, Vijg J, van Steeg H (1999) Effect of heterozygous loss of p53 on benzo[a]pyrene-induced mutations and tumors in DNA repair-deficient XPA mice. Environ Mol Mutagen 34: 124–130Google Scholar
  48. Vijg J, van Steeg H (1998) Transgenic assays for mutations and cancer: current status and future perspectives. Mutat Res 400: 337–354PubMedCrossRefGoogle Scholar
  49. Yu C-E, Oshima J, Fu Y-H, Wijsman EM, Hisama F, Alisch R, et al. (1996) Positional cloning of the Werner’s syndrome gene. Science 272: 258–262PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Martijn E. T. Dollé
    • 1
    • 2
  • Heidi Giese
    • 1
    • 2
  • Harry van Steeg
    • 1
    • 2
  • Jan Vijg
    • 2
  1. 1.University of Texas Health Science Center and CTRC Institute for Drug DevelopmentSan AntonioUSA
  2. 2.Laboratory of Health Effects ResearchNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands

Personalised recommendations