Skip to main content

Current Issues Concerning the Role of Oxidative Stress in Aging: A Perspective

  • Chapter
The Molecular Genetics of Aging

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 29))

Summary

The main tenet of the oxidative stress hypothesis of aging is that accrual of molecular oxidative damage is the principal causal factor in the senescence-related loss of ability to maintain homeostasis. This hypothesis has garnered a considerable amount of supportive correlational evidence, which is now being extended experimentally in transgenic Drosophila overexpressing antioxidative defense enzymes. Some of these studies have reported extensions of life span, while others have not. Interpretation of life spans in poikilotherms is complicated by a number of factors, including the interrelationship between metabolic rate and longevity. The life spans of poikilotherms can be extended multifold by reducing the metabolic rate but without affecting the metabolic potential, i.e., the total amount of energy expended during life. A hypometabolic state in poikilotherms also enhances stress resistance and activities of antioxidative enzymes. It is emphasized that extension of life span without simultaneously increasing metabolic potential is of questionable biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 85: 2706–2708

    PubMed  CAS  Google Scholar 

  • Agarwal S, Sohal RS (1994a) Aging and proteolysis of oxidized proteins. Arch Biochem Biophys 309: 24–28

    PubMed  CAS  Google Scholar 

  • Agarwal S, Sohal RS (1994b) DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci USA 91: 12332–12335

    PubMed  CAS  Google Scholar 

  • Agarwal S, Sohal RS (1994c) Aging and protein oxidative damage. Mech Ageing Dev 75: 11–19

    PubMed  CAS  Google Scholar 

  • Allen RG, Sohal RS (1982) Life-lengthening effects of y-radiation on the adult housefly, Musca domestica. Mech Ageing Dev 20: 369–375

    PubMed  CAS  Google Scholar 

  • Allen RG, Farmer KJ, Newton RK, Sohal RS (1984) Effects of paraquat administration on longevity, oxygen consumption, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, inorganic peroxides and glutathione in the adult housefly. Comp Biochem Physiol 78C: 283–288

    CAS  Google Scholar 

  • Anisimov VN, Mylnikov SV, Oparina TI, Khavinson VKh (1997) Effect of melatonin and pineal peptide preparation epithalamin on life span and free radical oxidation in Drosophila melanogaster. Mech Ageing Dev 97: 81–91

    PubMed  CAS  Google Scholar 

  • Anisimov VN, Mylnikov SV, Khavinson VKh (1998) Pineal peptide preparation epithalamin increases the life span of fruit flies, mice and rats. Mech Ageing Dev 103: 123–132

    PubMed  CAS  Google Scholar 

  • Bartosz G, Leyko W, Fried R (1979) Superoxide dismutase and lifespan of Drosophila melanogaster. Experientia 35: 1193

    PubMed  CAS  Google Scholar 

  • Bieschke ET, Wheeler JC, Tower J (1998) Doxycycline-induced transgene expression during Drosophila development and aging. Mol Gen Genet 258: 571–579

    PubMed  CAS  Google Scholar 

  • Bitterman N, Skapa E, Gutterman A (1997) Starvation and dehydration attenuate CNS oxygen toxicity in rats. Brain Res 761: 146–150

    PubMed  CAS  Google Scholar 

  • Bohr VA, Anson RM (1995) DNA damage, mutation and fine structure DNA repair in aging. Mutat Res 338: 25–34

    PubMed  CAS  Google Scholar 

  • Brack C, Bechter-Thüring, E, Labuhn M (1997) N-acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cell Mol Life Sci 53: 960–966

    PubMed  CAS  Google Scholar 

  • Breimer LH (1983) Urea-DNA glycosylase in mammalian cells. Biochemistry 22: 4192–4197

    PubMed  CAS  Google Scholar 

  • Campbell JA (1936) Body temperature and oxygen poisoning. J Physiol 89: 17P - 18 P

    Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605

    PubMed  CAS  Google Scholar 

  • Comfort A, Youhotsky-Gore I, Pathmanathan K (1971) Effect of ethoxyquin on the longevity of C3H mice. Nature 229: 254–255

    PubMed  CAS  Google Scholar 

  • Farmer KJ, Sohal RS (1989) Relationship between superoxide anion radical generation and aging in the housefly, Musca domestica. Free Radical Biol Med 7: 23–29

    CAS  Google Scholar 

  • Fleming JE, Leon HA, Miguel J (1981) Effects of ethidium bromide on development and aging of Drosophila: implications for the free radical theory of aging. Exp Gerontol 16: 287–293

    PubMed  CAS  Google Scholar 

  • Fleming JE, Shibuya RB, Bensch KG (1987) Lifespan, oxygen consumption and hydroxyl radical scavenging capacity of two strains of Drosophila melanogaster. Age 10: 86–89

    CAS  Google Scholar 

  • Gilbert DL, Gerschman R, Fenn WO (1955) Effects of fasting and X-irradiation on oxygen poisoning in mice. Am J Physiol 181: 272–274

    PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJA (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11: 526–534

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 298–300

    PubMed  CAS  Google Scholar 

  • Harman D (1978) Free radical theory of aging: nutritional implications. Age 1: 145–152

    Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78: 7124–7128

    PubMed  CAS  Google Scholar 

  • Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and lifespan in a number of mammalian species. Proc Natl Acad Sci USA 71: 2169–2173

    PubMed  CAS  Google Scholar 

  • Herbert V (1994) The antioxidant supplement myth. Am J Clin Nutr 60: 157–158

    PubMed  CAS  Google Scholar 

  • Hermes-Lima M, Storey JM, Storey KB (1998) Antioxidant defenses and metabolic depression.

    Google Scholar 

  • The hypothesis of preparation for oxidative stress in land snails. Comp Biochem Physiol B 120:437–448

    Google Scholar 

  • Hirano T, Yamaguchi R, Asami S, Iwamoto N, Kasai H (1996) 8–hydroxyguanine levels in nuclear DNA and its repair activity in rat organs associated with age. J Gerontol A Biol Sci Med Sci 51: B303–B307

    Google Scholar 

  • Hollstein MC, Brooks P, Linn S, Ames BN (1984) Hydroxymethyluracil DNA glycosylase in mammalian cells. Proc Natl Acad Sci USA 81: 4003–4007

    PubMed  CAS  Google Scholar 

  • Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257: 1496–1502

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Sakurai J (1986) In vivo studies on age dependency of DNA repair with age in mouse skin. Cancer Res 46: 1344–1348

    PubMed  CAS  Google Scholar 

  • Izmaylov DM, Obukhova LK (1996) Geroprotector efficiency depends on viability of control population: lifespan investigation in Drosophila melanogaster. Mech Ageing Dev 91: 155164

    Google Scholar 

  • Izmaylov DM, Obukhova LK (1999) Geroprotector effectiveness of melatonin: investigation of lifespan of Drosophila melanogaster. Mech Ageing Dev 106: 233–240

    PubMed  CAS  Google Scholar 

  • Jazwinski SM (1996) Longevity, genes, and aging. Science 273: 54–59

    PubMed  CAS  Google Scholar 

  • Johnson TE, Shook D, Murakami S, Cypser J (1999) Increased resistance to stress is a marker for gerontogenes leading to increased health and longevity in nematodes. In: Bohr VA, Clark BFC, Stevnsner T (eds) Molecular biology of aging. Munksgaard, Copenhagen, pp 25–34

    Google Scholar 

  • Koga T, Takumi K (1995) Nutrient starvation induces cross protection against heat, osmotic, or H202 challenge in Vibrio parahaemolyticus. Microbiol Immunol 39: 213–215

    PubMed  CAS  Google Scholar 

  • Kohn RR (1971) Effect of antioxidants on life span of C57BL mice. J Gerontol 26: 378–380

    CAS  Google Scholar 

  • Ku H-H, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radical Biol Med 15: 621–627

    CAS  Google Scholar 

  • Lamb MJ, McDonald RP (1973) Heat tolerance changes with age in normal and irradiated Drosophila melanogaster. Exp Gerontol 8: 207–217

    PubMed  CAS  Google Scholar 

  • Lee YJ, Ducoff HS (1984) Radiation-enhanced resistance to oxygen: a possible relationship to radiation-enhanced longevity. Mech Ageing Dev 27: 101–109

    PubMed  CAS  Google Scholar 

  • Lin Y-J, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943–946

    PubMed  CAS  Google Scholar 

  • Loeb J, Northrop J (1917) On the influence of food and temperature upon the duration of life. J Biol Chem 32: 103–121

    CAS  Google Scholar 

  • Manton KG, Stallard E, Wing S (1991) Analyses of black and white differentials in the age trajectory of mortality in two closed cohort studies. Stat Med 10: 1043–1059

    PubMed  CAS  Google Scholar 

  • Massie HR, Williams TR (1979) Increased longevity of Drosophila melanogaster with lactic and gluconic acids. Exp Gerontol 14: 109–115

    PubMed  CAS  Google Scholar 

  • Massie HR, Baird MB, Piekielniak MJ (1976) Ascorbic acid and longevity in Drosophila. Exp Gerontol 11: 37–41

    PubMed  CAS  Google Scholar 

  • Massie HR, Aiello VR, Williams TR, Baird MB, Hough JL (1993) Effect of vitamin A on longevity. Exp Gerontol 28: 601–610

    PubMed  CAS  Google Scholar 

  • McArthur MC, Sohal RS (1982) Relationship between metabolic rate, aging, lipid peroxidation and fluorescent age pigment in milkweed bug, Oncopeltus fasciatus (hemiptera). J Gerontol 37: 268–274

    Google Scholar 

  • McCord JM (1995) Superoxide radical: controversies, contradictions, and paradoxes. Proc Natl Acad Sci USA 209: 112–117

    CAS  Google Scholar 

  • Miguel J, Economos AC (1979) Favorable effects of the antioxidants sodium and magnesium thiazolidine carboxylate on the vitality and life span of Drosophila and mice. Exp Gerontol 14: 279–285

    Google Scholar 

  • Miguel J, Lundren PR, Bensch KG, Atlan H (1976) Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 5: 347–370

    Google Scholar 

  • Miguel J, Fleming J, Economos AC (1982) Antioxidants, metabolic rate and aging in Drosophila.Arch Gerontol Geriatr 1: 159–165

    Google Scholar 

  • Miguel J, Binnard R, Fleming JE (1983) Role of metabolic rate and DNA-repair in Drosophila aging: implications for the mitochondrial mutation theory of aging. Exp Gerontol 18: 167–171

    Google Scholar 

  • Mockett RJ, Sohal RS, Orr WC (1999) Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J 13: 1733–1742

    PubMed  CAS  Google Scholar 

  • Newton RK, Ducore JM, Sohal RS (1989) Relationship between life expectancy and endogenous DNA single-strand breakage, strand break induction and DNA repair capacity in the adult housefly, Musca domestica. Mech Ageing Dev 49: 259–270

    PubMed  CAS  Google Scholar 

  • Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82: 563–567

    PubMed  CAS  Google Scholar 

  • Omar BA, Gad NM, Jordan MC, Striplin SP, Russell WJ, Downey JM, McCord JM (1990) Cardioprotection by Cu,Zn-superoxide dismutase is lost at high doses in the reoxygenated heart. Free Radical Biol Med 9: 465–471

    CAS  Google Scholar 

  • Orr WC, Sohal RS (1992) The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 297: 35–41

    PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1993) Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 301: 34–40

    PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–1130

    PubMed  CAS  Google Scholar 

  • Orr WC, Arnold LA, Sohal RS (1992) Relationship between catalase activity, life span and some parameters associated with antioxidant defenses in Drosophila melanogaster. Mech Ageing Dev 63: 287–296

    PubMed  CAS  Google Scholar 

  • Oudes AJ, Herr CM, Olsen Y, Fleming JE (1998) Age-dependent accumulation of advanced glycation end-products in adult Drosophila melanogaster. Mech Ageing Dev 100: 221–229

    PubMed  CAS  Google Scholar 

  • Pacifici RE, Davies KJA (1991) Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology 37: 166–180

    PubMed  CAS  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SODI in motorneurons. Nat Genet 19: 171–174

    PubMed  CAS  Google Scholar 

  • Parmar MKB, Machin D (1995) Survival analysis: a practical approach. John Wiley and Sons, Chichester

    Google Scholar 

  • Parsons PA (1996) Rapid development and a long life: an association expected under a stress theory of aging. Experientia 52: 643–646

    PubMed  CAS  Google Scholar 

  • Pearl R (1928) The rate of living. Alfred A Knopf, New York

    Google Scholar 

  • Pennisi E (1998) Single gene controls fruit fly life-span. Science 282: 856

    PubMed  CAS  Google Scholar 

  • Ragland SS, Sohal RS (1973) Mating behavior, physical activity, and aging in the housefly, Musca domestica. Exp Gerontol 8: 135–145

    PubMed  CAS  Google Scholar 

  • Reveillaud I, Niedzwiecki A, Bensch KG, Fleming JE (1991) Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol Cell Biol 11: 632–640

    PubMed  CAS  Google Scholar 

  • Reveillaud I, Phillips J, Duyf B, Hilliker A, Kongpachith A, Fleming JE (1994) Phenotypic rescue by a bovine transgene in a Cu,Zn-superoxide dismutase-null mutant of Drosophila melanogaster. Mol Cell Biol 14: 1302–1307

    PubMed  CAS  Google Scholar 

  • Rubner M (1908) Das Problem der Lebensdauer and seine Beziehungen zum Wachstum and Ernährung. Oldenburg, München

    Google Scholar 

  • Ruddle DL, Yengoyan LS, Miguel J, Marcuson R, Fleming JE (1988) Propyl gallate delays senescence in Drosophila melanogaster. Age 11: 54–58

    CAS  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  • Seto NOL, Hayashi S, Tener GM (1990) Overexpression of Cu,Zn-superoxide dismutase in Drosophila does not affect life span. Proc Natl Acad Sci USA 87: 4270–4274

    PubMed  CAS  Google Scholar 

  • Sohal RS (1982) Oxygen consumption and life span in the adult male housefly, Musca domestica. Age 5: 21–24

    Google Scholar 

  • Sohal RS (1986) The rate of living theory: a contemporary interpretation. In: Collatz KG, Sohal RS (eds) Insect aging. Springer, Berlin Heidelberg New York, pp 23–44

    Google Scholar 

  • Sohal RS (1988) Effect of hydrogen peroxide administration on life span, superoxide dismutase, catalase and glutathione in the adult housefly, Musca domestica. Exp Gerontol 23: 211–216

    PubMed  CAS  Google Scholar 

  • Sohal RS, Allen RG (1986) Relationship between oxygen metabolism, aging and development. Adv Free Radical Biol Med 2: 117–160

    CAS  Google Scholar 

  • Sohal RS, Brunk UT (1990) Lipofuscin as an indicator of oxidative stress. In: Porta EA (ed) Lipofuscin and ceroid pigments. Plenum, New York, pp 17–29

    Google Scholar 

  • Sohal RS, Dubey A (1994) Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radical Biol Med 16: 621–626

    CAS  Google Scholar 

  • Sohal RS, Sohal BH (1991) Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 57: 187–202

    PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273: 5963

    Google Scholar 

  • Sohal RS, Wolfe LS (1986) Lipofuscin: characteristics and significance. In: Swaab DF, Fliers E, Mirmiran M, Van Gool WD, Van Haaren F (eds) Progress in brain research, 70. Elsevier, Amsterdam, pp 171–183

    Google Scholar 

  • Sohal RS, Farmer KJ, Allen RG, Cohen NR (1984a) Effect of age on oxygen consumption, superoxide dismutase, catalase, glutathione, inorganic peroxides and chloroform-soluble antioxidants in the adult male housefly, Musca domestica. Mech Ageing Dev 24: 185–195

    PubMed  CAS  Google Scholar 

  • Sohal RS, Farmer KJ, Allen RG, Ragland SS (1984b) Effect of diethyldithiocarbamate on life span, metabolic rate, superoxide dismutase, catalase, inorganic peroxides and glutathione in the adult housefly, Musca domestica. Mech Ageing Dev 24: 175–183

    PubMed  CAS  Google Scholar 

  • Sohal RS, Allen RG, Farmer KJ, Newton RK, Toy PL (1985a) Effects of exogenous antioxidants on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life-span in the housefly, Musca domestica. Mech Ageing Dev 31: 329–336

    PubMed  CAS  Google Scholar 

  • Sohal RS, Muller A, Koletzko B, Sies H (1985b) Effect of age and ambient temperature on n-pentane production in adult housefly, Musca domestica. Mech Ageing Dev 29: 317–326

    PubMed  CAS  Google Scholar 

  • Sohal RS, Svensson I, Sohal BH, Brunk UT (1989) Superoxide anion radical production in different animal species. Mech Ageing Dev 49: 129–135

    PubMed  CAS  Google Scholar 

  • Sohal RS, Arnold L, Orr WC (1990a) Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mech Ageing Dev 56: 223–235

    PubMed  CAS  Google Scholar 

  • Sohal RS, Arnold LA, Sohal BH (1990b) Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radical Biol Med 10: 495–500

    Google Scholar 

  • Sohal RS, Sohal BH, Brunk UT (1990c) Relationship between antioxidant defenses and longevity in different mammalian species. Mech Ageing Dev 53: 217–227

    PubMed  CAS  Google Scholar 

  • Sohal RS, Svensson I, Brunk UT (1990d) Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev 53: 209–215

    PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal S, Dubey A, Orr WC (1993) Protein oxidative damage is associated with life expectancy. Proc Natl Acad Sci USA 90: 7255–7259

    PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal S, Candas M, Forster M, Lal H (1994a) Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 76: 215–224

    PubMed  CAS  Google Scholar 

  • Sohal RS, Ku H-H, Agarwal S, Forster MJ, Lal H (1994b) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74: 121–133

    PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal A, Agarwal S, Orr WC (1995a) Simultaneous overexpression of copper-and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 270: 15671–15674

    PubMed  CAS  Google Scholar 

  • Sohal RS, Sohal BH, Orr WC (1995b) Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radical Biol Med 19: 499–504

    CAS  Google Scholar 

  • Starke-Reed PE, Oliver CN (1989) Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275: 559–567

    PubMed  CAS  Google Scholar 

  • Sun J, Tower J (1999) FLP Recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the lifespan of adult Drosophila melanogaster flies. Mol Cell Biol 19: 216–228

    PubMed  CAS  Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390: 30

    PubMed  CAS  Google Scholar 

  • Teixeira HD, Schumacher RI, Meneghini R (1998) Lower intracellular hydrogen peroxide levels in cells overexpressing CuZn-superoxide dismutase. Proc Natl Acad Sci USA 95: 7872–7875

    PubMed  CAS  Google Scholar 

  • The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330: 1029–1035

    Google Scholar 

  • Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci USA 96: 11399–11403

    PubMed  Google Scholar 

  • Wheeler JC, Bieschke ET, Tower J (1995) Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci USA 92: 10408–10412

    PubMed  CAS  Google Scholar 

  • Yong-Xing M, Yue Z, Chuan-Fu W, Zan-Shun W, Su-Ying C, Mei-Hua S, Jie-Ming G, Jian-Gang Z, Qi G, Lin H (1997) The aging retarding effect of `Long-Life CiLi’. Mech Ageing Dev 96: 171–180

    Google Scholar 

  • Yu BP (1996) Aging and oxidative stress: modulation by dietary restriction. Free Radical Biol Med 21: 651–668

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sohal, R.S., Mockett, R.J., Orr, W.C. (2000). Current Issues Concerning the Role of Oxidative Stress in Aging: A Perspective. In: Hekimi, S. (eds) The Molecular Genetics of Aging. Results and Problems in Cell Differentiation, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48003-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48003-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53686-1

  • Online ISBN: 978-3-540-48003-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics