Skip to main content

The Role of the p35/cdk5 Kinase in Cortical Development

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

Extensive studies on the mouse mutant reeler have revealed many of the fundamental characteristics of neocortical development (Caviness and Rakic 1978; Caviness 1982; Caviness et al. 1988). The finding of another spontaneously occurring mouse mutant, scrambler which exhibits nearly identical phenotypes with reeler suggests that the gene products mutated in the strains, mdab-1 and reelin, respectively, act in a common signaling pathway during cortical development (Sweet et al. 1996; Gonzalez et al. 1997; Howell et al. 1997; Sheldon et al. 1997; Ware et al. 1997; Rice et al. 1998). However, the vast complexity of events that must occur to set up the architecture of the cerebral cortex leads to the idea that multiple proteins are essential during cortical development. The p35/cdk5 kinase complex is one such molecular entity. Mouse knockouts of both p35 and cdk5 lead to disruptions of cortical lamination (Ohshima et al. 1996; Chae et al. 1997). Interestingly, the phenotype of the embryonic cerebral wall and adult neocortex in these mice is suggestive of but distinct from that of reeler or scrambler implying that a different essential function during cortical development may be disrupted in mice lacking p35 or cdk5 (Gilmore et al. 1998; Kwon and Tsai 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen KM, Gleeson JG, Bagrodia S, Partington MW, MacMillan JC, Cerione RA, Mulley JC, Walsh CA (1998) PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 20: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Beaudette KN, Lew J, Wang JH (1993) Substrate specificity characterization of a cdc2-like protein kinase purified from bovine brain. J Biol Chem 268: 20 825–20 830

    Google Scholar 

  • Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC, Zemni R, Crollius HR, Carrie A, Fauchereau F, Cherry M, Briault S, Hamel B, Fryns JP, Beldjord C, Kahn A, Moraine C, Chelly J (1998) Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392: 923–926

    Article  PubMed  CAS  Google Scholar 

  • Brown NR, Noble ME, Endicott JA, Garman EF, Wakatsuki S, Mitchell E, Rasmussen B, Hunt T, Johnson LN (1995) The crystal structure of cyclin A. Structure 3: 1235–1247

    Article  PubMed  CAS  Google Scholar 

  • Cai XH, Tomizawa K, Tang D, Lu YF, Moriwaki A, Tokuda M, Nagahata S, Hatase O, Matsui H (1997) Changes in the expression of novel Cdk5 activator messenger RNA (p39nck5ai mRNA) during rat brain development. Neurosci Res 28: 355–360

    Article  PubMed  CAS  Google Scholar 

  • Caviness VSJ (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Dev Brain Res 4: 293–302

    Article  Google Scholar 

  • Caviness VSJ, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1: 297–326

    Article  PubMed  Google Scholar 

  • Caviness VSJ, Crandall JE, Edwards MA (1988) The reeler malformation: implications for neocortical histogenesis. In: Peters A, Jones EG (eds) Cerebral cortex, vol 7. Plenum Press, New York, pp 59–89

    Chapter  Google Scholar 

  • Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18: 29–42

    Article  PubMed  CAS  Google Scholar 

  • D’Adamo P, Menegon A, Lo Nigro C, Grasso M, Gulisano M, Tamanini F, Bienvenu T, Gedeon AK, Oostra B, Wu SK, Tandon A, Valtorta F, Balch WE, Chelly J, Toniolo D (1998) Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat Genet 19: 134–139

    Article  PubMed  Google Scholar 

  • Delalle I, Bhide PG, Caviness VS Jr, Tsai LH (1997) Temporal and spatial patterns of expression of p35, a regulatory subunit of cyclin-dependent kinase 5, in the nervous system of the mouse. J Neurocytol 26: 283–296

    Article  PubMed  CAS  Google Scholar 

  • des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrie A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92: 51–61

    Article  PubMed  Google Scholar 

  • Gilmore EC, Ohshima T, Goffinet AM, Kulkarni AB, Herrup K (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18: 6370–6377

    PubMed  CAS  Google Scholar 

  • Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JL, Russo CJ, Goldowitz D, Sweet HO, Davisson MT, Walsh CA (1997) Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J Neurosci 17: 9204–9211

    PubMed  CAS  Google Scholar 

  • Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389: 733–737

    Article  PubMed  CAS  Google Scholar 

  • Huang QQ, Lee KY, Wang JH (1996) A novel yeast protein showing specific association with the cyclin-dependent kinase 5. FEBS Lett 378: 48–50

    Article  PubMed  CAS  Google Scholar 

  • Ino H, Ishizuka T, Chiba T, Tatibana M (1994) Expression of CDK5 (PSSALRE kinase), a neural cdc2-related protein kinase, in the mature and developing mouse central and peripheral nervous systems. Brain Res 661: 196–206

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K, Kobayashi S, Omori A, Takamatsu M, Yonekura S, Anzai K, Imahori K, Uchida T (1994) Identification of the 23 kDa subunit of tau protein kinase II as a putative activator of cdk5 in bovine brain. FEBS Lett 342: 203–208

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Ishiguro K, Omori A, Takamatsu M, Arioka M, Imahori K, Uchida T (1993) A cdc2-related kinase PSSALRE/cdk5 is homologous with the 30 kDa subunit of tau protein kinase II, a proline-directed protein kinase associated with microtubule. FEBS Lett 335: 171–175

    Article  PubMed  CAS  Google Scholar 

  • Kwon YT, Tsai LH (1998) A novel disruption of cortical development in p35-/- mice distinct from reeler. J Comp Neurol 395: 510–522

    Article  PubMed  CAS  Google Scholar 

  • Kwon YT, Tsai LH, Crandall JE (1999) Callosal axon guidance defects in p35-/- mice. J Comp Neurol 415: 218–229

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Helbing CC, Choi KS, Johnston RN, Wang JH (1997) Neuronal Cdc2-like kinase (Nclk) binds and phosphorylates the retinoblastoma protein. J Biol Chem 272:5622–5626

    Article  PubMed  CAS  Google Scholar 

  • Lew J, Beaudette K, Litwin CM, Wang JH (1992) Purification and characterization of a novel proline-directed protein kinase from bovine brain. J Biol Chem 267: 13 383–13 390

    Google Scholar 

  • Lew J, Wang JH (1995) Neuronal cdc2-like kinase. Trends Biochem Sci 20: 33–37

    Article  PubMed  CAS  Google Scholar 

  • Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371: 423–426

    Article  PubMed  CAS  Google Scholar 

  • Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271:21 108–21 113

    Google Scholar 

  • Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH (1992) A family of human cdc2-related protein kinases. EMBO J 11: 2909–2917

    PubMed  CAS  Google Scholar 

  • Nikolic M, Dudek H, Kwon YT, Ramos YF, Tsai LH (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 10: 816–825

    Article  PubMed  CAS  Google Scholar 

  • Nikolic M, Chou MM, Lu W, Mayer BJ, Tsai LH (1998) The p35/cdk5 kinase is a neuron-specific Rac effector that inhibits Pakl activity. Nature 395: 194–198

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11 173–11 178

    Google Scholar 

  • Paglini G, Pigino G, Kunda P, Morfini G, Maccioni R, Quiroga S, Ferreira A, Caceres A (1998) Evidence for the participation of the neuron-specific CDK5 activator P35 during lamininenhanced axonal growth. J Neurosci 18: 9858–9869

    PubMed  CAS  Google Scholar 

  • Patrick GN, Zhou P, Kwon YT, Howley PM, Tsai LH (1998) p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem 273:24 057–24 064

    Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, Monte SDL, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates cdk5 activity and promotes neurodegeneration. Nature 402: 615–622

    Article  PubMed  CAS  Google Scholar 

  • Philpott A, Porro EB, Kirschner MW, Tsai LH (1997) The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Dev 11: 1409–1421

    Article  PubMed  CAS  Google Scholar 

  • Philpott A, Tsai LH, Kirschner MW (1999) Neuronal differentiation and patterning in Xenopus: the role of cdk5 and a novel activator xp35.2. Dev Biol 20: 119–132

    Article  Google Scholar 

  • Pigino G, Paglini G, Ulloa L, Avila J, Caceres A (1997) Analysis of the expression, distribution and function of cyclin dependent kinase 5 (cdk5) in developing cerebellar macroneurons. J Cell Sci 110: 257–270

    PubMed  CAS  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, Caskey CT, Ledbetter DH (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364: 717–721

    Article  PubMed  CAS  Google Scholar 

  • Rice DS, Sheldon M, D’Arcangelo G, Nakajima K, Goldowitz D, Curran T (1998) Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125: 3719–3729

    PubMed  CAS  Google Scholar 

  • Sapir T, Elbaum M, Reiner 0 (1997) Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J 16: 6977–6984

    CAS  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389: 730–733

    Article  PubMed  CAS  Google Scholar 

  • Shuang R, Zhang L, Fletcher A, Groblewski GE, Pevsner J, Stuenkel EL (1998) Regulation of Munc-18/syntaxin lA interaction by cyclin-dependent kinase 5 in nerve endings. J Biol Chem 273: 4957–4966

    Article  PubMed  CAS  Google Scholar 

  • Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erkl. Mol Cell Biol 16: 6486–6493

    PubMed  CAS  Google Scholar 

  • Strobel G (1997) Disordering the brain gives clues to brain disorders. Focus 1: 1, 6

    Google Scholar 

  • Sweet HO, Bronson RT, Johnson KR, Cook SA, Davisson MT (1996) Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm Genome 7: 798–802

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Yeung J, Lee KY, Matsushita M, Matsui H, Tomizawa K, Hatase O, Wang JH (1995) An isoform of the neuronal cyclin-dependent kinase 5 (CdkS) activator. J Biol Chem 270:26 897–26 903

    Google Scholar 

  • Tang D, Chun ACS, Zhang M, Wang JH (1997) Cyclin-dependent kinase 5 (CdkS) activation domain of neuronal CdkS activator. Evidence of the existence of cyclin fold in neuronal Cdk5a activator. J Biol Chem 272:12 318–12 327

    Google Scholar 

  • Tomizawa K, Matsui H, Matsushita M, Lew J, Tokuda M, Itano T, Konishi R, Wang JH, Hatase O (1996) Localization and developmental changes in the neuron-specific cyclin-dependent kinase 5 activator (p35nck5a) in the rat brain. Neuroscience 74: 519–529

    Article  PubMed  CAS  Google Scholar 

  • Tsai LH, Takahashi T, Caviness VSJ, Harlow E (1993) Activity and expression pattern of cyclindependent kinase 5 in the embryonic mouse nervous system. Development 119: 1029–1040

    PubMed  CAS  Google Scholar 

  • Tsai LH, Delalle I, Caviness VSJ, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371: 419–423

    Google Scholar 

  • Van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262: 2050–2054

    Article  PubMed  Google Scholar 

  • Ware ML, Fox JW, Gonzalez JL, Davis NM, Lambert de Rouvroit C, Russo CJ, Chua SC Jr, Goffinet AM, Walsh CA (1997) Aberrant splicing of a mouse disabled homolog, mdabl, in the scrambler mouse. Neuron 19: 239–249

    Article  PubMed  CAS  Google Scholar 

  • Xiong W, Pestell R, Rosner MR (1997) Role of cyclins in neuronal differentiation of immortalized hippocampal cells. Mol Cell Biol 17: 6585–6597

    PubMed  CAS  Google Scholar 

  • Zheng M, Leung CL, Liem RK (1998) Region-specific expression of cyclin-dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J Neurobiol 35: 141–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kwon, Y.T., Tsai, LH. (2000). The Role of the p35/cdk5 Kinase in Cortical Development. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics