Broadcast Authentication in Group Communication

  • Rei Safavi-Naini
  • Huaxiong Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1716)


Traditional point-to-point message authentication systems have been extensively studied in the literature. In this paper we consider authentication for group communication. The basic primitive is a multireceiver authentication system with dynamic sender (DMRA-code). In a DMRA-code any member of a group can broadcast an authenticated message such that all other group members can individually verify its authenticity. In this paper first we give a new and flexible ‘synthesis’ construction for DMRA-codes by combining an authentication code (A-code) and a key distribution pattern. Next we extend DMRA-codes to tDMRA-codes in which t senders are allowed. We give two constructions for tDMRA-codes, one algebraic and one by ‘synthesis’ of an A-code and a perfect hash family. To demonstrate the usefulness of DMRA systems, we modify a secure dynamic conference key distribution system to construct a key-efficient secure dynamic conference system that provides secrecy and authenticity for communication among conferencees. The system is key-efficient because the key requirement is essentially the same as the original conference key distribution system and so authentication is effectively obtained without any extra cost. We show universality of ‘synthesis’ constructions for unconditional and computational security model that suggests direct application of our results to real-life multi-casting scenarios in computer networks. We discuss possible extensions to this work.


Group Communication Message Authentication Code Authentication Code Authentication System Broadcast Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atici, M., Magliveras, S.S., Stinson, D.R., Wei, W.D.: Some Recursive Constructions for Perfect Hash Families. Journal of Combinatorial Designs 4, 353–363 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellare, M., Canetti, R., Krawczyk, H.: Key hash functions for message authentication. In: Advance in Cryptology–Crypto 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Blackburn, S.R.: Combinatorics and Threshold Cryptology, in Combinatorial Designs and their Applications, Chapman & Hall/CRC Res. Notes Math 403, 49–70 (1997)MathSciNetGoogle Scholar
  4. 4.
    Blackburn, S.R., Burmester, M., Desmedt, Y., Wild, P.R.: Efficient multiplicative sharing schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 107–118. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Blackburn, S.R., Wild, P.R.: Optimal linear perfect hash families. J. Comb. Theory - Series A 83, 233–250 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Czech, Z.J., Havas, G., Majewski, B.S.: Perfect Hasing. Theoretical Computer Science 182, 1–143 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Desmedt, Y., Frankel, Y., Yung, M.: Multi-receiver/Multi-sender network security: efficient authenticated multicast/feedback. In: IEEE Infocom 1992, pp. 2045–2054 (1992)Google Scholar
  9. 9.
    Dyer, M., Fenner, T., Frieze, A., Thomason, A.: On key storage in secure Networks. Journal of Cryptology 8, 189–200 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Fujii, H., Kachen, W., Kurosawa, K.: Combinatorial bounds and design of broadcast authentication. IEICE Trans. E79-A(4), 502–506 (1996)Google Scholar
  12. 12.
    Gong, L., Wheeler, D.J.: A matrixk ey-distribution scheme. J. Cryptology 2, 51–59 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kurosawa, K., Obana, S.: Characterization of (k, n) multi-receiver authentication. In: Mu, Y., Pieprzyk, J.P., Varadharajan, V. (eds.) ACISP 1997. LNCS, vol. 1270, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Matsumoto, T.: Incidence structures for key sharing. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 242–253. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Mehlhorn, K.: Data Structures and Algorithms, vol. 1. Springer, Heidelberg (1984)Google Scholar
  16. 16.
    Mitchell, C.J., Piper, F.C.: Key storage in secure networks. Discrete Applied Mathematics 21, 215–228 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    O’Keefe, C.M.: Key distribution patterns using Minkowski planes. In: Designs, Codes and Cryptography, vol. 5, pp. 261–267. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Safavi-Naini, R., Wang, H.: New results on multi-receiver authentication codes. In: Advances in Cryptology – Eurocrypt 1998. LNCS, vol. 1438, pp. 527–541. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Safavi-Naini, R., Wang, H.: Bounds and constructions for multireceiver authentication codes. In: Advances in Cryptology – Asiacrypt 1998. LNCS, pp. 242–256 (1998)Google Scholar
  20. 20.
    Safavi-Naini, R., Wang, H.: Multireceiver authentication codes: models, bounds, constructions and extensions. Information and Computation 151, 148–172 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Simmons, G.J.: A survey of information authentication. In: Simmons, G.J. (ed.) Contemporary Cryptology, The Science of Information Integrity, pp. 379–419. IEEE Press, Los Alamitos (1992)Google Scholar
  22. 22.
    Stinson, D.R.: On some methods for unconditionally secure key distribution and broadcast encryption. Designs, Codes and Cryptography 12, 215–243 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Stinson, D.R., van Trung, T., Wei, R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Statist. Plan. Infer, (to appear) Google Scholar
  24. 24.
    Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. of Computer and System Science 22, 265–279 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Rei Safavi-Naini
    • 1
  • Huaxiong Wang
    • 2
  1. 1.School of IT and CSUniversity of WollongongAustralia
  2. 2.Department of Computer ScienceNational University of SingaporeSingapore

Personalised recommendations