Advertisement

A Signature Scheme with Message Recovery as Secure as Discrete Logarithm

  • Masayuki Abe
  • Tatsuaki Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1716)

Abstract

This paper, for the first time, presents a provably secure signature scheme with message recovery based on the (elliptic-curve) discrete logarithm. The proposed scheme can be proven to be secure in the strongest sense (i.e., existentially unforgeable against adaptively chosen message attacks) in the random oracle model under the (elliptic-curve) discrete logarithm assumption. We give the concrete analysis of the security reduction. When practical hash functions are used in place of truly random functions, the proposed scheme is almost as efficient as the (elliptic-curve) Schnorr signature scheme and the existing schemes with message recovery such as (elliptic-curve) Nyberg-Rueppel and Miyaji schemes.

Keywords

Elliptic Curve Success Probability Signature Scheme Random Oracle Discrete Logarithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: Proc. of the First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures –How to Sign with RSA and Rabin. In: Proc. of Eurocrypt 1996. LNCS, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Bleichenbacher, D.: Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The RandomO racle Methodology, Revisited. In: Proc. of STOC, pp. 209–218. ACM Press, New York (1998)Google Scholar
  5. 5.
    Naccache, J.S.D., Stern, J.P.: On the Security of RSA Padding. In: Proc. of Crypto 1999. LNCS, Springer, Heidelberg (1999)Google Scholar
  6. 6.
    ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fiat, A., Shamir, A.: How to Prove Yourself. In: Proc. of Crypto 1986. LNCS, pp. 186–194. Springer, Heidelberg (1986)Google Scholar
  8. 8.
    Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. J. of Cryptology 1, 77–94 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. on Computing 17, 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48, 203–209 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Miyaji, A.: A Message Recovery Signature Scheme Equivalent to DSA over Elliptic Curves. In: Proc. of Asiacrypt 1996. LNCS, pp. 1–14. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applications. In: Proc. of STOC, pp. 33–43 (1989)Google Scholar
  13. 13.
    Nyberg, K., Rueppel, R.A.: A New Signature Scheme Based on the DSA Giving Message Recovery. In: Proc. of the First ACM Conference on Computer and Communications Security (1993)Google Scholar
  14. 14.
    Nyberg, K., Rueppel, R.A.: Message Recovery for Signature Schemes Based on the Discrete LogarithmProb lem. In: Proc. of Eurocrypt 1994. LNCS, pp. 182–193. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Nyberg, K., Rueppel, R.A.: Message Recovery for Signature Schemes Based on the Discrete Logarithm Problem. Designs, Codes and Cryptography 7, 61–81 (1996)zbMATHGoogle Scholar
  16. 16.
    Ohta, K., Okamoto, T.: On the Concrete Security Treatment of Signatures Derived fromI dentification. In: Proc. of Crypto 1998. LNCS. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Proc. of Eurocrypt 1996. LNCS, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signature. In: Proc. of STOC, pp. 387–394 (1990)Google Scholar
  19. 19.
    Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schnorr, C.P.: Efficient Identification and Signatures for Smart Card. In: Proc. of Eurocrypt 1989. LNCS, pp. 235–251. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Masayuki Abe
    • 1
  • Tatsuaki Okamoto
    • 1
  1. 1.NTT LaboratoriesYokosuka-shiJapan

Personalised recommendations