Advertisement

Periodical Multi-secret Threshold Cryptosystems

  • Masayuki Numao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1716)

Abstract

A periodical multi-secret threshold cryptosystem enables a sender to encrypt a message by using a cyclical sequence of keys which are shared by n parties and periodically updated. The same keys appear in the same order in each cycle, and thus any subset of t+1 parties can decrypt the message only in the periodical time-frames, while no subset of t corrupted parties can control the system (in particular, none can learn the decryption key). This scheme can be applied to a timed-release cryptosystem whose release time is determined when the number of share update phases equals the period of the sequence. The system is implemented by sharing a pseudo-random sequence generator function. It realizes n≥3t+1 robustness, and is therefore secure against an adversary who can corrupt at most one third of the parties.

Keywords

Secret Sharing Public Input Honest Party Malicious Adversary Real Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. BGM97.
    Bellare, M., Goldwasser, S., Micciancio, D.: Pseudo-RandomNum ber Generation within Cryptographic Algorithms: the DSS Case. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)Google Scholar
  2. BBS86.
    Blum, L., Blum, M., Shub, M.: A Simple Unpredictable Pseudo-random Number Generator. SIAM Journal on Computing 15(2), 364–383 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  3. BGW88.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: Proceedings of the 20th ACM Symposium on Theory of Computing, pp. 1–10 (1988)Google Scholar
  4. CCD88.
    Chaum, D., Crepeau, C., Damgärd, I.: Multiparty Unconditionally Secure Protocols. In: Proceedings of 20th ACM Symposium on Theory of Computing, pp. 11–19 (1988)Google Scholar
  5. CH94.
    Canetti, R., Herzberg, A.: Maintaining Security in the Presence of Transient Faults. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer, Heidelberg (1994)Google Scholar
  6. Cha90.
    Chaum, D.: Zero-Knowledge Undeniable Signature. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)Google Scholar
  7. CMI93.
    Cerecedo, M., Matsumoto, T., Imai, H.: Efficient and Secure Multiparty Generation of Digital Signatures Based on Discrete Logarithms. IEICE Transaction on Fundamentals E76-A(4), 522–533 (1993)Google Scholar
  8. Des88.
    Desmedt, Y.: Society and Group Oriented Cryptography: A New Concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988)Google Scholar
  9. DF90.
    Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  10. Fel87.
    Feldman, P.: A Practical Scheme for Non-interactive Verifiable Secret Sharing. In: Proceedings of the IEEE 28th Annual Symposium on Foundation of Computer Science, pp. 427–437 (1987)Google Scholar
  11. FGMY98.
    Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal- Resilience Proactive Public-Key Cryptosystems. In: Proceedings of the IEEE 38th Annual Symposium on Foudation of Computer Sciences (1997)Google Scholar
  12. FY92.
    Franklin, M., Yung, M.: Communication Complexity of Secure Computation. In: Proceedings of the 24th ACM Symposium on Theory of Computing (1992)Google Scholar
  13. GRR98.
    Gennaro, R., Rabin, O., Rabin, T.: Simplified VSS and Fast-Track Multiparty Computations with Applications to Threshold Cryptography. In: Proceedings of the 17th ACM Symposium on Principles of Distributed Computing (1998)Google Scholar
  14. HJKY95.
    Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing or: How to Copy With Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)Google Scholar
  15. May93.
    May, T.C.: Timed-Release Crypto. Informal memo referred to by [RSW96]Google Scholar
  16. OY91.
    Ostrovsky, R., Yung, M.: How to Withstand Mobile Virus Attacks. In: Proceedings of the 10th ACM Symposium on Principle of Distributed Computing (1991)Google Scholar
  17. Sha79.
    Shamir, A.: How to Share A Secret. Communications of the ACM 22 (1979)Google Scholar
  18. Ped91a.
    Pedersen, T.: Distributed Provers with Applications to Undeniable Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer, Heidelberg (1991)Google Scholar
  19. Ped91b.
    Pedersen, T.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  20. Ped91c .
    Pedersen, T.: A Threshold Cryptosystemw ithout a Trusted Party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)Google Scholar
  21. RSW96.
    Rivest, L.R., Shamir, A., Wagner, D.A.: Time-Lock Puzzles and Time- Released Crypto. MIT Technical Paper, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Masayuki Numao
    • 1
  1. 1.Tokyo Research LaboratoryIBM Japan, Ltd.Yamato, KanagawaJAPAN

Personalised recommendations