A Class of Explicit Perfect Multi-sequences

  • Chaoping Xing
  • Kwok Yan Lam
  • Zhenghong Wei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1716)


In [7], perfect multi-sequences are introduced and a construction based on function fields over finite fields is given. In this paper, we explore the construction in [7] by considering rational function fields. Consequently a class of perfect multi-sequences are obtained.


  1. 1.
    Ding, C.S.: Proof of Massey’s conjectured algorithm. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 345–349. Springer, Heidelberg (1988)Google Scholar
  2. 2.
    Kohel, D.R., Ling, S., Xing, C.P.: To appear in DMTC Explicit sequence expansions. Springer, Heidelberg Google Scholar
  3. 3.
    Niederreiter, H.: Sequences with almsot perfect linear complexity profile. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 37–51. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)zbMATHGoogle Scholar
  5. 5.
    Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology–The Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)Google Scholar
  6. 6.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)zbMATHGoogle Scholar
  7. 7.
    Xing, C.P.: Perfect multi-sequences and function fields over finite fields (1999) (preprint)Google Scholar
  8. 8.
    Xing, C.P., Lam, K.Y.: Sequences with almost perfect linear complexity profiles and curves over finite fields. IEEE Trans. Inform. Theory IT-45, 1267–1270 (1999)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Chaoping Xing
    • 1
  • Kwok Yan Lam
    • 2
  • Zhenghong Wei
    • 3
  1. 1.Department of MathematicsNational University of SingaporeSingapore
  2. 2.School of ComputingNational University of SingaporeSingapore
  3. 3.Department of MathematicsShenzhen Normal CollegePeople’s Republic of China

Personalised recommendations