Skip to main content

Laser Glass: An Engineered Material

  • Chapter
Lasers, Spectroscopy and New Ideas

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 54))

Abstract

In 1958 SCHAWLOW and TOWNES [1] proposed that an optical maser could be made with the right combination of spectroscopic properties of an excited atom, ion, or molecule in a gas or solid, an optical pumping source, and a resonant cavity. The key to their proposal was their choice of a Fabry-Perot cavity as the resonator. This proposal stimulated several efforts to make an optical maser. In 1960 MAIMAN [2] demonstrated coherent emission from a ruby crystal, and the laser era had begun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Schawlow and C. H. Townes: “Infrared and Optical Masers, ” Phys. Rev.112, 1940–1949 (1958).

    ADS  Google Scholar 

  2. T.H. Maiman: “Stimulated Optical Radiation in Ruby, ” Nature 187, 493–494 (1960).

    ADS  Google Scholar 

  3. A. Javan, W. R. Bennett, Jr., and D. R. Herriot: “Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a Ne-Ne Mixture, ” Phys. Rev. Lett. 6, 106 (1961).

    ADS  Google Scholar 

  4. E. Snitzer: “Optical Maser Action of Nd+3 in a Barium Crown Glass, ” Phys. Rev. Lett. 7, 444 (1961).

    ADS  Google Scholar 

  5. H. W. Etzel, H. W. Gandy, and R. J. Ginther: “Stimulated Emission of Infrared Radiation From Ytterbium-Activated Silicate Glass, ” Appl. Opt. 1, 534 (1962).

    ADS  Google Scholar 

  6. H. W. Gandy and R. J. Ginther: “Stimulated Emission from Holmium Activated Silicate Glass”, Proc. IRE 50, 2113 (1962).

    Google Scholar 

  7. E. Snitzer and R. Woodcock: “Yb3+-Er3+ Glass Laser, ” Appl. Phys. Lett. 6, 45 (1965).

    ADS  Google Scholar 

  8. H. W. Gandy, R. J. Ginther, and J. F. Weller: “Stimulated Emission of Tm3+ Radiation In Silicate Glass, ” J. Appl. Phys. 38, 3030 (1967).

    ADS  Google Scholar 

  9. S. I. Andreev, M. R. Bedilov, G. O. Karapetyan, and V. M. Likhachev: “Stimulated Radiation of Glass Activated By Terbium, ” Sov. J. Opt. Tech. 34, 819 (1967)

    Google Scholar 

  10. S. I. Andreev, M. R. Bedilov, G. O. Karapetyan, and V. M. Likhachev: “Stimulated Radiation of Glass Activated By Terbium, ” Opt.-Mekh. Promst. 34, 60 (1967).

    Google Scholar 

  11. C. G. Young: “Continuous Glass Laser, ” Appl. Phys. Lett. 2, 151 (1963).

    ADS  Google Scholar 

  12. E. Snitzer and C. G. Young: “Glass Lasers, ” in Advances in Lasers, ed. by A. Levine, vol. 2 (Dekker, New York, 1968).

    Google Scholar 

  13. J. M. McMahon, J. L. Emmett, J. F. Holzrichter, and J. B. Trenholme: “A Glass-Disk-Laser Amplifier, ” IEEE J. Quantum Electron. QE-9, 992 (1973).

    ADS  Google Scholar 

  14. D. C. Brown: “Parasitic Oscillations In Large Aperture Nd3+ Glass Amplifiers Revisited, ” Appl. Opt. 12, 2215 (1973).

    ADS  Google Scholar 

  15. J. A. Glaze, S. Guch, and J. B. Trenholme: “Parasitic Suppression In Large Aperture Nd;Glass Disk Laser Amplifiers, ” Appl. Opt. 13, 2808 (1974).

    ADS  Google Scholar 

  16. H. W. Mocker and R. J. Collins: “Mode Competition and Self-Locking Effects in a Q-Switched Ruby Laser, ” Appl. Phys. Lett. 7, 270 (1965).

    ADS  Google Scholar 

  17. K. H. Sun: “Fundamental Condition of Glass Formation, ” J. Am. Ceram. Soc. 30, 277 (1947).

    Google Scholar 

  18. C. G. Young: “Glass Laser Delivers 5000-Joule Output, ” Laser Focus 3, 36 (February, 1967).

    Google Scholar 

  19. H. W. Gandy, R. J. Ginther, and J. F. Weiler: “Energy Transfer in Silicate Glass Coactivated with Cerium and Neodymium, ” Phys. Lett. 11, 213 (1964).

    ADS  Google Scholar 

  20. R.R. Jacobs, C.B. Layne, M.J. Weber, and C. Rapp: “Ce3+ → Nd3+Energy Transfer in Silicate Glass, ” J. Appl. Phys. 47, 2020 (1976).

    ADS  Google Scholar 

  21. S. Shionoya and E. Nakazawa: “Sensitization of Nd3+ Luminescence by Mn2+ and Ce3+ in Glasses, ” Appl. Phys. Lett. 6, 117 (1965).

    ADS  Google Scholar 

  22. N. T. Melamed, C. Hirayama, and E. K. Davis: “Laser Action in Neo-dymium-doped Glass Produced Through Energy Transfer, ” Appl. Phys. Lett. 7, 170 (1965).

    ADS  Google Scholar 

  23. N. T. Melamed, C. Hirayama, and P. W. French: “Laser Action in Ura-nyl-Sensitized Nd-Doped Glass, ” Appl. Phys. Lett. 6, 43 (1965).

    ADS  Google Scholar 

  24. H. W. Gandy, R. J. Ginther, and J. F. Weiler: “Energy Transfer in Triply Activated Glasses, ” Appl. Phys. Lett. 6, 46 (1965).

    ADS  Google Scholar 

  25. J. C. Joshi, N. C. Pandey, B. C Joshi, and J. Joshi: “Energy Transfer from UO2 → Nd3+ in Barium Borate Glass, ” J. Luminescence 16, 435 (1978).

    ADS  Google Scholar 

  26. A. Y. Cabezas and L. G. DeShazer: “Radiative Transfer of Energy Between Rare-Earth Ions in Glass, ” Appl. Phys. Lett. 4, 37 (1964).

    ADS  Google Scholar 

  27. R. Reisfeld and Y. Kalisky: “Energy Transfer Between Bi3+ and Nd3+ in Germanate Glass, ” Chem. Phys. Lett. 50, 199 (1977).

    ADS  Google Scholar 

  28. E. J. Sharp, M. J. Weber, and G. Cleek: “Energy Transfer and Fluorescence Quenching in Eu- and Nd-Doped Silicate Glasses, ” J. Appl. Phys. 47, 364 (1976).

    Google Scholar 

  29. G. O. Karapetyan, V. P. Kovalyov, and S. G. Lunter: “Chromium Sensitization of the Neodymium Luminescence in Glass, ” Opt. Spectrosc. USSR 19, 529 (1965)

    ADS  Google Scholar 

  30. G. O. Karapetyan, V. P. Kovalyov, and S. G. Lunter: “Chromium Sensitization of the Neodymium Luminescence in Glass, ” Opt. Spectrosk. 19, 951 (1965).

    Google Scholar 

  31. G. Dauge: “Nonradiative Energy Transfer in Silicate Glass, ” IEEE J. Quantum Electron. QE-2, lviii (1966).

    Google Scholar 

  32. J. G. Edwards and S. Gomulka: “Enhanced Performance of Nd Laser Glass by Double Doping With Cr, ” J. Phys. D. 12, 187 (1979).

    ADS  Google Scholar 

  33. A. G. Avanesov, Yu. K. Voron’kov, B. I. Denker, G. V. Maosimova, V. V. Osiko, A. M. Prokhorov, and I. A. Shcherbakov: “Nonradiative Energy Transfer from Cr3+ to Nd3+ Ions in Glasses with High Neodymium Concentrations, ” Sov. J. Quantum Electron. 9, 935 (1979)

    ADS  Google Scholar 

  34. A. G. Avanesov, Yu. K. Voron’kov, B. I. Denker, G. V. Maosimova, V. V. Osiko, A. M. Prokhorov, and I. A. Shcherbakov: “Nonradiative Energy Transfer from Cr3+ to Nd3+ Ions in Glasses with High Neodymium Concentrations, ” Kvantovaya Elektron. 6, 1583 (1979).

    ADS  Google Scholar 

  35. R. D. Maurer: “Nd3+ Fluorescence and Stimulated Emission in Oxide Glasses, ” in Proceedings of the Symposium on Optical Masers, Microwave Research Institute Symposia Series Vol. XIII (Polytechnic Press, Brooklyn, NY, 1963) p. 435.

    Google Scholar 

  36. G. T. Petrovksii, M. N. Tolstoi, P. P. Feofilov, G. A. Tsurikova, and V. N. Shapovalov: “Luminescence and Stimulated Emission of Neodymium in Beryllium Fluoride Glass, ” Opt. Spectrosc. USSR 21, 72 (1966)

    ADS  Google Scholar 

  37. G. T. Petrovksii, M. N. Tolstoi, P. P. Feofilov, G. A. Tsurikova, and V. N. Shapovalov: “Luminescence and Stimulated Emission of Neodymium in Beryllium Fluoride Glass, ” Opb Spektrosk. 21, 126 (1966).

    Google Scholar 

  38. F. Auzel: “Emission Stimulée de Er34“ dans un Verre Fluorophosphate, ” C. R. Acad. Sc. Ser. B 263, 765 (1966).

    ADS  Google Scholar 

  39. G. Deutschbein, C. Pautrat, and I. M. Svirchevsky: “Phosphate Glasses, New Laser Materials, ” Rev. Phys. Appl. 1, 29 (1967).

    Google Scholar 

  40. N. G. Basov and O. N. Krokhin: “Conditions For Heating Up of a Plasma by the Radiation from an Optical Generator, ” Sov. Phys. JETP Lett. 19, 123–125 (1964).

    Google Scholar 

  41. R. E. Kidder: “Applications of Lasers to the Production of High-Temperature and High Pressure Plasma, ” Nucl. Fusion 8, 3–12 (1968).

    Google Scholar 

  42. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman: “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications, ” Nature 239, 139–142 (1972).

    ADS  Google Scholar 

  43. N. G. Basov, Yu. S. Ivanov, O.N. Krokhin, Yu.A. Mikhailov, G.V. Sklizkov, and S. I. Fedotov: “Neutron Generation In Spherical Irradiation of a Target by High-Power Laser Radiation, ” Sov. Phys. JETP Lett. 15, 417–419 (1972).

    ADS  Google Scholar 

  44. J. E. Swain, R. E. Kidder, K. Pettipiece, F. Rainer, E. D. Baird, and B. Loth: “Large-Aperture Glass Disk Laser System, ” J. Appl. Phys. 40, 3973 (1969).

    ADS  Google Scholar 

  45. S. E. Stokowski, W. H. Lowdermilk, F. T. Marchi, J. E. Swain, E. P. Wallerstein, and G. R. Wirtenson: “Advances in Optical Materials for Large Aperture Lasers, ” in Proceedings of Electro-Optics/Laser ’81, Anaheim, C.A, Nov. 17–19 (Industrial & Scientific Conf. Management, Chicago, 1981), p. 203.

    Google Scholar 

  46. W. W. Simmons and R. O. Godwin: “Nova Laser Fusion Facility—Design, Engineering, and Assembly Overview, ” Nucl. Technbl. Fusion 4, 8–24 (1983).

    Google Scholar 

  47. D. W. Harper: “Assessment of Neodymium Optical Maser Glass, ” Phys. Chem Glasses 5, 11 (1964).

    Google Scholar 

  48. C. Hirayama and D. W. Lewis: Phys. Chem. Glasses 5, 44 (1964).

    Google Scholar 

  49. J. B. Trenholme and J. L. Emmett: “Xenon Flashlamp Model for Performance Prediction” in Proceedings of Ninth International Conference on High Speed Photography, ed. by W. G. Hyzen and W. G. Chase (Society of Motion Picture and Television Engineers, New York, 1970), p. 299

    Google Scholar 

  50. A summary of the Trenholme-Emmett model and a review of flash-lamp pumping of Nd:Glass lasers is found in: D. C Brown: High-Peak-Power Nd:Glass Laser Systems (Springer, Berlin, 1981), Ch. 3;

    Google Scholar 

  51. H. T. Powell, A. C. Erlandson, and K. S. Jancaitis: “Characterization of High Power Flashlamps and Application to Nd:glass Laser Pumping, ” Proc. SPIE Conf. on Flashlamp Pumped Laser Technology 609, 78 (1986).

    Google Scholar 

  52. J. B. Trenholme: Lawrence Livermore National Laboratory, Livermore, C.A, private communication (1987).

    Google Scholar 

  53. M. Hercher: J. Opt. Soc. Am. 54, 563 (1964).

    Google Scholar 

  54. R. Y. Chiao, E. Garmire, and C. H. Townes: “Self-Trapping of Optical Beams, ” Phys. Rev. Lett. 13, 479 (1964).

    ADS  Google Scholar 

  55. J. B. Trenholme: “Small-Scale Instability Growth: Review of Small Signal Theory, ” in Laser Program Annual Report74, Lawrence Livermore National Laboratory, Livermore, Calif., UCRL-50021–74 (1975), p. 179.

    Google Scholar 

  56. E. S. Bliss, J. T. Hunt, P. A. Renard, G. E. Sommargren, and H. J. Weaver: “Effects of Nonlinear Propagation on Laser Focusing Properties, ” IEEE J. Quantum Electron. QE-12, 402 (1976).

    ADS  Google Scholar 

  57. E. S. Bliss, D. R. Speck, and W. W. Simmons: “Direct Interferometric Measurements of the Nonlinear Refractive Index Coefficient n 2 in Laser Materials, ” Appl. Phys. Lett. 25, 718 (1974).

    ADS  Google Scholar 

  58. D. Milam and M. J. Weber: “Measurement of Nonlinear Refractive Index Coefficients using Time-Resolved Interferometry: Application to Optical Materials for High-Power Neodymium Lasers, ” J. Appl. Phys. 47, 2497 (1976).

    ADS  Google Scholar 

  59. D. Milam and M. J. Weber: “Nonlinear Refractive Index Coefficients for Nd Phosphate Laser Glasses, ” IEEE J. Quantum Electron. QE-13, 512 (1976).

    ADS  Google Scholar 

  60. D. Milam, M. J. Weber, and A. J. Glass: “Nonlinear Refractive Index of Fluoride Crystals, ” Appl. Phys. Lett 31, 822 (1977).

    ADS  Google Scholar 

  61. M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, and R. W. Hellwarth: “Measurements of the Electronic and Nuclear Contributions to the Nonlinear Refractive Index of Beryllium Fluoride glasses, ” Appl. Phys. Lett. 32, 403 (1978).

    ADS  Google Scholar 

  62. M. J. Weber, D. Milam, and W. L. Smith: “Nonlinear Refractive Index of Glasses and Crystals, ” Opt. Eng. 17, 463 (1978).

    Google Scholar 

  63. N. L. Boling, A. J. Glass, and A. Owyoung: “Empirical Relationships for Predicting Nonlinear Refractive-Index Changes in Optical Solids, ” IEEE J. Quantum Electron. QE-14, 601 (1978).

    ADS  Google Scholar 

  64. A. J. Glass: Laser Program Annual Report74, Lawrence Livermore National Laboratory, Livermore, C.A, UCRL-50021–84 (1975), p. 260.

    Google Scholar 

  65. J. L. Emmett, W. F. Krupke, and W. R. Sooy: “Future Development of High-Power Solid State Laser Systems, ” Lawrence Livermore National Laboratory, Livermore, C.A, UCRL-53344 (1982)

    Google Scholar 

  66. J. L. Emmett, W. F. Krupke, and W. R. Sooy: Sov. J. Quantum Electron. 13, 1 (1983).

    ADS  Google Scholar 

  67. R. W. Hopper and D. R. Uhlmann: “Mechanism of Inclusion Damage in Laser Glass, ” J. Appl. Phys. 41, 4023 (1970).

    ADS  Google Scholar 

  68. J. H. Pitts: “Modeling Laser Damage Caused by Platinum Inclusions in Laser Glass, ” Lawrence Livermore National Laboratory, Livermore, C.A, UCRL-93249 (1985): to be published in Proceedings of the 17th Annual Symposium—Optical Materials for High Power Lasers, Boulder, Colorado, National Bureau of Standards, Washington, DC, NBS Special Publication.

    Google Scholar 

  69. C. Brecher, L. A. Riseberg, and M. J. Weber: “Line-Narrowec. Fluorescence Spectra and Site-Dependent Transition Probabilities of Nd3+ in Oxide and Fluoride Glasses, ” Phys. Rev. B 18, 5799 (1978).

    ADS  Google Scholar 

  70. C. Brecher, L. A. Riseberg, and M. J. Weber: “Site-Dependent Variation of Spectroscopic Relaxation Parameters in Nd Glasses, ” J. Luminescence 18/19, 651 (1979).

    ADS  Google Scholar 

  71. V.I. Nikitin, M.S. Soskin, and A.I. Khizhnyak: “Influence of Uncorrected Inhomogeneous Broadening of the 1.06 fim Band of the Nd3+ Ions on Laser Properties of Neodymium Glasses, ” Sov. J. Quantum Electron. 8, 788 (1978)

    ADS  Google Scholar 

  72. V.I. Nikitin, M.S. Soskin, and A.I. Khizhnyak: “Influence of Uncorrected Inhomogeneous Broadening of the 1.06 fim Band of the Nd3+ Ions on Laser Properties of Neodymium Glasses, ” Kvantovaya Elektron. 5, 1375 (1978).

    ADS  Google Scholar 

  73. V. I. Nikitin, M. S. Soskin, and A. I. Khizhnyak: “New Data About Internal 1.06 μm Luminescence Band Structure of Nd3+ in Silicate Glass, ” Sov. Tech. Phys. Lett. 2, 64 (1976)

    Google Scholar 

  74. V. I. Nikitin, M. S. Soskin, and A. I. Khizhnyak: “New Data About Internal 1.06 μm Luminescence Band Structure of Nd3+ in Silicate Glass, ” Pis’ma Zh. Tekh. Fiz. 2, 172 (1976).

    Google Scholar 

  75. V. I. Nikitin, M. S. Soskin, and A. I. Khizhnyak: “Uncorrected Nonuniform Spreading—A Basic Reason for Narrow-Band Generation in Phosphate Glass with Nd3+ , ” Sov. Tech. Phys. Lett. 3 , 5 (1977)

    Google Scholar 

  76. V. I. Nikitin, M. S. Soskin, and A. I. Khizhnyak: “Uncorrected Nonuniform Spreading—A Basic Reason for Narrow-Band Generation in Phosphate Glass with Nd3+ , ” Pis’ma Zh. Tekh. Piz. 3, 14 (1977).

    Google Scholar 

  77. W. E. Martin and D. Milam: “Gain Saturation in Nd:Doped Laser Materials, ” IEEE J. Quantum Electron. QE-18, 1155 (1982).

    ADS  Google Scholar 

  78. S. M. Yarema and D. Milam: “Gain Saturation in Phosphate Laser Glasses, ” IEEE J. Quantum Electron. QE-18, 1941 (1982).

    ADS  Google Scholar 

  79. B. R. Judd: “Optical Absorption Intensities of Rare-Earth Ions, ” Phys. Rev. 127, 750 (1962).

    ADS  Google Scholar 

  80. G. S. Ofelt: “Intensities of Crystal Spectra of Rare-Earth Ions, ” J. Chem. Phys. 37, 511 (1962).

    ADS  Google Scholar 

  81. R. D. Peacock: “The Intensities of Lanthanide f↔f Transitions, ” Struct. Bonding 22, 83 (1975).

    Google Scholar 

  82. W. F. Krupke: “Induced-Emission Cross Sections in Neodymium Laser Glasses, ” IEEE J. Quantum Electron. QE-10, 450 (1974).

    ADS  Google Scholar 

  83. T. S. Lomheim and L. G. DeShazer: “New Procedure of Determining Neodymium Fluorescence Branching Ratios as Applied to 25 Crystal and Glass Hosts, ” Opt. Comm. 24, 89 (1978).

    ADS  Google Scholar 

  84. S. E. Stokowski: Lawrence Livermore National Laboratory, Livermore, CA: measurements made in 1978.

    Google Scholar 

  85. H. T. Powell, J. E. Murray, and K. S. Jancaitis: Lawrence Livermore National Laboratory, Livermore, C.A, private communication (1987).

    Google Scholar 

  86. C. B. Layne, W. H. Lowdermilk, and M. J. Weber: “Multiphonon Relaxation of Rare-Earth Ions in Oxide Glasses, ” Phys. Rev. B 16, 10 (1977).

    ADS  Google Scholar 

  87. C. B. Layne and M. J. Weber: “Multiphonon Relaxation of Rare-Earth Ions in Beryllium-Fluoride Glass, ” Phys. Rev. B 16, 3259 (1977).

    ADS  Google Scholar 

  88. N. E. Alekseev, V. P. Gapontsev, M. E. Zhabotinskii, V. B. Kravchenko, and Yu. P. Rudnitskii: Laser Phosphate Glasses (Nauka, Moscow, 1980): Lawrence Livermore National Laboratory, Livermore, C.A, UCRL-TRANS-11817 (1983), p. 3–97.

    Google Scholar 

  89. T. Förster: Ann. Phys. 2, 55 (1948).

    MATH  Google Scholar 

  90. D. L. Dexter: “A Theory of Sensitized Luminescence in Solids, ” J. Chem. Phys. 21, 836 (1953).

    ADS  Google Scholar 

  91. D. L. Dexter and J. H. Schulman: “Theory of Concentration Quenching in Inorganic Phosphors, ” J. Chem. Phys. 22, 1063 (1954).

    ADS  Google Scholar 

  92. S. E. Stokowski: “Glass Lasers” in CRC Handbook of Laser Science and Technology, Vol. 1, Lasers and Masers, ed. by M. J. Weber (CRC Press, Boca Raton, FL, 1982), p. 215.

    Google Scholar 

  93. S. E. Stokowski and D. Krashkevich: “Transition-Metal Ions in Nd-Doped Glasses: Spectra and Effects on Nd Fluorescence, ” Mat. Res. Soc. Symp. Proc. 61, 273 (1986).

    Google Scholar 

  94. V. F. Egorova, V. S. Zubkova, G. O. Karapetyan, A.A. Mak, D.S. Prilezhaev, and A. L. Reichakhrit: “Influence of Glass Composition on the Luminescence Characteristics of Nd3+ Ions, ” Opt. Spectrosc. USSR 23, 148 (1967)

    ADS  Google Scholar 

  95. V. F. Egorova, V. S. Zubkova, G. O. Karapetyan, A.A. Mak, D.S. Prilezhaev, and A. L. Reichakhrit: “Influence of Glass Composition on the Luminescence Characteristics of Nd3+ Ions, ” Opt. Spectrosk. 23, 275 (1967).

    Google Scholar 

  96. RH. Sarkies, J.N. Sandoe, and S. Parke: “Variation of Nd3+ Cross Section for Stimulated Emission with Glass Composition, ” J. Phys. D: Appl. Phys. 4, 1642 (1971).

    ADS  Google Scholar 

  97. R. R. Jacobs and M. J. Weber: “Dependence of the 4F3/24I11/2 Induced-Emission Cross Section for Nd3+ on Glass Composition, ” IEEE J. Quantum Electron. QE-12, 102 (1976).

    ADS  Google Scholar 

  98. H. G. Lipson, J. R. Buckmelter, and C. O. Dugger: “Neodymium Ion Environment in Germanate Crystals and Glasses, ” J. Non-Cryst. Solids 17, 27 (1975).

    ADS  Google Scholar 

  99. N. B. Brachkovskaya, A. A. Grubin, S. G. Lunter, A. K. Przhevuskii, E. L. Raaben, and M. N. Tolstoi: “Intensities of Optical Transitions in Absorption and Luminescence Spectra of Neodymium in Glasses, ” Sov. J. Quantum Electron. 6, 534 (1976).

    ADS  Google Scholar 

  100. G. O. Brachkovskaya, G. O. Karapetyan, A. L. Reishakhrit, and M. N. Tolstoi: “Luminescence of Neodymium in Alkali Silicate Glasses, ” Opt. Spectrosc. 29, 173 (1970).

    Google Scholar 

  101. K. Hauptmanova, J. Pantoflicek, and K. Patek: “Absorption and Fluorescence of Nd3+ Ion in Silicate Glass, ” Phys. Status Solidi 9, 525 (1965).

    Google Scholar 

  102. C. Hirayama: “Nd Fluorescence in Alkali Borate Glasses, ” Phys. Chem Glasses 7, 52 (1966).

    Google Scholar 

  103. C. Hirayama, F. E. Camp, N. T. Melamed, and K. B. Steinbruegge: “Nd3+ in Germanate Glasses: Spectral and Laser Properties, ” J. Non-Cryst. Solids 6, 342 (1971).

    ADS  Google Scholar 

  104. N. E. Alekseev, A. A. Izyneev, Yu. L. Kopylov, V. B. Kravchenko, Yu. P. Rudnitskii, and N. F. Udovenko: “Activated Nd3+ Laser Glasses Based on the Metaphosphates of Divalent Metals, ” J. Appl. Spectrosc. 24, 691 (1976)

    ADS  Google Scholar 

  105. N. E. Alekseev, A. A. Izyneev, Yu. L. Kopylov, V. B. Kravchenko, Yu. P. Rudnitskii, and N. F. Udovenko: “Activated Nd3+ Laser Glasses Based on the Metaphosphates of Divalent Metals, ” Zh. Prikl. Spektrosk. 24, 976 (1976).

    ADS  Google Scholar 

  106. N. E. Alekseev, A. A. Izyneev, Yu. L. Kopylov, V. B. Kravchenko, and Yu. P. Rudnitskii: “A Study of Neodymium Glasses Based on Alkali Metal Metaphosphates, ” J. Appl. Spectrosc. 26, 87 (1977)

    ADS  Google Scholar 

  107. N. E. Alekseev, A. A. Izyneev, Yu. L. Kopylov, V. B. Kravchenko, and Yu. P. Rudnitskii: “A Study of Neodymium Glasses Based on Alkali Metal Metaphosphates, ” Zh. Prikl. Spektrosk. 26, 116 (1977).

    Google Scholar 

  108. S. E. Stokowski, R. A. Saroyan, and M. J. Weber: “ Nd Doped Laser Glass Spectroscopic and Physical Properties, ” Lawrence Livermore National Laboratory, Livermore, C.A, M-095 Rev. 2 (1981).

    Google Scholar 

  109. Yu. K. Voronko, B. I. Denker, A.A. Zlenko, et al.: “Spectral Lasing Properties of LHNd Phosphate Glass, ” Opt. Commun. 18, 88 (1976).

    ADS  Google Scholar 

  110. L. M. Cook, A. J. Marker III, and S. E. Stokowski: in Proc. SPIE, Vol. 505 (Soc. Photo-Optical Inst. Engineers, Bellingham, Wash., 1984). pp. 102–111.

    Google Scholar 

  111. J. E. Marion: “Strengthened Solid-State Laser Materials, ” Appl. Phys. Lett. 47(7), 694–696 (1985).

    ADS  Google Scholar 

  112. J. E. Marion: “Development of High Strength Solid State Laser Materials, ” Proc. Amer. Inst. Physics 146, 234 (1986).

    ADS  Google Scholar 

  113. Owens-Illinois, Inc., Optical Products Division, Product Information on ED-2S Strengthened Glass (1978).

    Google Scholar 

  114. S. D. Stookey: High Strength Materials, ed. by V. F. Zakey (Wiley, New York, 1964), p. 669.

    Google Scholar 

  115. K. A. Cerqua, S. D. Jacobs, B. L. Mclntyre, and W. Zhong: to be published in Proceedings of the Boulder Damage Conference, 1985, National Bureau of Standards, Washington, DC, NBS Special Publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stokowski, S.E. (1987). Laser Glass: An Engineered Material. In: Yen, W.M., Levenson, M.D. (eds) Lasers, Spectroscopy and New Ideas. Springer Series in Optical Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47872-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47872-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13608-9

  • Online ISBN: 978-3-540-47872-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics