Skip to main content

Contributions of Electron Microscopic Spreading Preparations (“Miller Spreads”) to the Analysis of Chromosome Structure

  • Chapter
Structure and Function of Eukaryotic Chromosomes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 14))

Abstract

Before introduction of the chromatin spreading technique by Miller and Beatty in 1969 (Miller and Beatty 1969 a-d), relatively limited information was available concerning the submicroscopic organization of chromosomes in mitosis and interphase. Thus, at the end of the 1960s the general picture that emerged from inspection of ultrathin sections of cell nuclei, isolated chromatin, and of whole mount preparations was that mitotic chromosomes and interphase chromatin consisted of a complex meshwork of irregularly sized and knobby fibers with diameters ranging from 20 to 30 nm (for reviews see Ris 1969; DuPraw 1970; Solari 1974; Ris and Korenberg 1979; Hozier 1979). Although the internal organization of chromatin fibers was particularly suitable for study by surface spreading on an air-water interface, originally introduced by Gall (1963), neither a discrete subunit organization was recognized nor could the “thick” chromatin fibers be reproducibly unfolded into thinner fibers which were believed to be transcriptionally active (Gall 1966). Hence, electron microscopic methods were unavailable to study features of chromosomes during interphase, i.e., their functional subdivision into transcriptionally active and inactive domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amabis JM, Nair KK (1976) Ultrastructure of gene transcription in spermatocytes of Trichosia pubescens Morgante, 1969 (diptera: sciaridae). Z Naturforsch 31c: 186–189

    Google Scholar 

  • Angelier N, Lacroix JC (1975) Complexes de transcription d’origines nucléolaire et chromosomique d’ovocytes de Pleurodeles waltlii et P.poireti (amphibiens, urodèles). Chromosoma 51: 323–335

    Article  PubMed  CAS  Google Scholar 

  • Angelier N, Hemon D, Bouteille M (1979) Mechanisms of transcription in nucleoli of amphibian oocytes as visualized by high-resolution autoradiography. J Cell Biol 80: 277–290

    Article  PubMed  CAS  Google Scholar 

  • Angelier N, Hernandez-Verdun D, Bouteille M (1982) Visualization of Ag-NOR proteins on nucleolar transcriptional units in molecular spreads. Chromosoma 86: 661–672

    Article  PubMed  CAS  Google Scholar 

  • Bachvarova R, Burns JP, Spiegelman I, Choy J, Chaganti RSK (1982) Morphology and transcriptional activity of mouse oocyte chromosomes. Chromosoma 86: 181–196

    Article  PubMed  CAS  Google Scholar 

  • Bakken A, Morgan G, Sollner-Webb B, Roan J, Busby S, Reeder RH (1982) Mapping of transcription initiation and termination signal on Xenopus laevis ribosomal DNA. Proc Natl Acad Sci USA 79: 56–60

    Article  PubMed  CAS  Google Scholar 

  • Beermann S (1984) Circular and linear structures in chromatin diminution of Cyclops. Chromo-soma 89: 321–328

    Article  Google Scholar 

  • Berger S, Schweiger H-G (1982) Characterization and species differences of rRNA in algae. In: Busch H, Rothblum L (eds) The cell nucleus, vol 10. Academic Press, New York, pp 31–65

    Google Scholar 

  • Beyer AL, Miller OL, McKnight SL (1980) Ribonucleoprotein structure in nascent hnRNA is nonrandom and sequence-dependent. Cell 20: 75–84

    Article  PubMed  CAS  Google Scholar 

  • Beyer AL, Bouton AH, Miller OL (1981) Correlation of hnRNP structure and nascent transcript cleavage. Cell 26: 155–165

    Article  PubMed  CAS  Google Scholar 

  • Bona M, Scheer U, Bautz EKF (1981) Antibodies to RNA polymerase II ( B) inhibit transcription in lampbrush chromosomes after microinjection into living amphibian oocytes. J Mol Biol 151: 81–99

    Google Scholar 

  • Borchsenius S, Bonven B, Leer JC, Westergaard O (1981) Nuclease-sensitive regions on the extrachromosomal r-chromatin from Tetrahymena pyriformis. Eur J Biochem 117: 245–250

    Article  PubMed  CAS  Google Scholar 

  • Busby S, Bakken A (1979) A quantitative electron microscopic analysis of transcription in sea urchin embryos. Chromosoma 71: 249–262

    Article  PubMed  CAS  Google Scholar 

  • Busby S, Bakken A (1980) Transcription in developing sea urchins: electron microscopic analysis of cleavage, gastrula and prism stages. Chromosoma 79: 85–104

    Article  PubMed  CAS  Google Scholar 

  • Bustin M, Goldblatt D, Sperling R (1976) Chromatin structure visualization by immunoelectron microscopy. Cell 7: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Callan HG (1982) Lampbrush chromosomes. Proc R Soc Lond B 214: 417–448

    Article  PubMed  CAS  Google Scholar 

  • Calvet JP, Pederson T (1979) Heterogeneous nuclear RNA double-stranded regions probed in living HeLa cells by crosslinking with the psoralen derivative aminomethyltrioxsalen. Proc Natl Acad Sci USA 76: 755–759

    Article  PubMed  CAS  Google Scholar 

  • Chou WY (1976) RNA transcription and ribosomal protein assembly in Drosophila melano-gaster. In: King RC (ed) Handbook of genetics, vol 5. Plenum, New York, pp 219–265

    Chapter  Google Scholar 

  • Chooi WY, Leiby KR (1981) An electron microscopic method for localization of ribosomal pro-teins during transcription of ribosomal DNA: a method for studying protein assembly. Proc Natl Acad Sci USA 78: 4823–4827

    Article  PubMed  CAS  Google Scholar 

  • Cotton RW, Manes C, Hamkalo BA (1980) Electron microscopic analysis of RNA transcription in preimplantation rabbit embryos. Chromosoma 79: 169–178

    Article  PubMed  CAS  Google Scholar 

  • de Loos F, Dijkhof R, Grond CJ, Hennig W (1984) Lampbrush chromosome loop-specificity of transcript morphology in spermatocyte nuclei of Drosophila hydei. EM BO J 3: 28452849

    Google Scholar 

  • Diaz MO, Gall JG (1985) Giant readthrough transcription units at the histone loci on lampbrush chromosomes of the newt Notophthalmus. Chromosoma 92: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt Notophthalmus. Cell 24: 649–659

    Article  PubMed  CAS  Google Scholar 

  • DuPraw EJ (1970) DNA and chromosomes. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Engberg J (1985) The ribosomal RNA genes of Tetrahymena: structure and function. Eur J Cell Biol 36: 133–151

    PubMed  CAS  Google Scholar 

  • Foe VE (1978) Modulation of ribosomal RNA synthesis in Oncopeltus fasciatus: an electron microscopic study of the relationship between changes in chromatin structure and transcriptional activity. Cold Spring Harbor Symp Quant Biol 42: 723–740

    Article  PubMed  CAS  Google Scholar 

  • Foe VE, Wilkinson LE, Laird CD (1976) Comparative organization of active transcription units in Oncopeltus fasciatus. Cell 9: 131–146

    Article  PubMed  CAS  Google Scholar 

  • Fostel J, Narayanswami S, Hamkalo B, Clarkson SG, Pardue ML (1984) Chromosomal location of a major tRNA gene cluster of Xenopus laevis. Chromosoma 90: 254–260

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Scheer U (1978) Morphology of transcriptional units at different states of activity. Philos Trans R Soc Lond B 283: 333–342

    Article  CAS  Google Scholar 

  • Franke WW, Scheer U, Spring H, Trendelenburg MF, Krohne G (1976a) Morphology of transcriptional units of rDNA. Exp Cell Res 100: 233–244

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Scheer U, Trendelenburg MF, Spring H, Zentgraf H (1976b) Absence of nucleosomes in transcriptionally active chromatin. Cytobiologie 13: 401–434

    Google Scholar 

  • Franke WW, Scheer U, Trendelenburg MF, Zentgraf H, Spring H (1978) Morphology of tran-scriptionally active chromatin. Cold Spring Harbor Symp Quant Biol 42: 755–772

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Scheer U, Spring H, Trendelenburg MF, Zentgraf H (1979) Organization of nu-cleolar chromatin. In: Busch H (ed) The cell nucleus, vol 7. Academic Press, New York, pp 49–95

    Google Scholar 

  • Gall JG (1963) Chromosome fibers from an interphase nucleus. Science 139: 120–121

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (1966) Chromosome fibers studied by a spreading technique. Chromosoma 20: 221–233

    Article  PubMed  CAS  Google Scholar 

  • Gall JG, Stephenson EC, Erba HP, Diaz MO, Barsacchi-Pilone G (1981) Histone genes are located at the sphere loci of newt lampbrush chromosomes. Chromosoma 84: 159–171

    Article  PubMed  CAS  Google Scholar 

  • Ghose D, Weiss E, Homo JC, Van Regenmortel MHV, Oudet P (1983) Visualization of anti-histone antibodies on SV40 minichromosomes by scanning transmission electron microscopy ( STEM ). Exp Cell Res 147: 135–142

    Google Scholar 

  • Glätzer KH (1975) Visualization of gene transcription in spermatocytes of Drosophila hydei. Chromosoma 53: 371–379

    Article  PubMed  Google Scholar 

  • Glätzer KH (1980) Regular substructures within homologous transcripts of spread Drosophila germ cells. Exp Cell Res 125: 519–523

    Article  PubMed  Google Scholar 

  • Glätzer KH, Meyer GF (1981) Morphological aspects of the genetic activity in primary spermatocyte nuclei of Drosophila hydei. Biol Cell 41: 165–172

    Google Scholar 

  • Grainger RM, Maizels N (1980) Dictyostelium ribosomal RNA is processed during transcription. Cell 20: 619–623

    Google Scholar 

  • Grainger RM, Ogle RC (1978) Chromatin structure of the ribosomal RNA genes in Physarum polycephalum. Chromosoma 65: 115–126

    Article  CAS  Google Scholar 

  • Greimers R, Deltour R (1981) Organization of transcribed and nontranscribed chromatin in isolated nuclei of Zea mays root cells. Eur J Cell Biol 23: 303–311

    PubMed  CAS  Google Scholar 

  • Grond CJ, Siegmund I, Hennig W (1983) Visualization of a lampbrush loop-forming fertility gene in Drosophila hydei. Chromosoma 88: 50–56

    Article  CAS  Google Scholar 

  • Hamkalo BA, Miller OL (1973) Electronmicroscopy of genetic activity. Annu Rev Biochem 42: 379–396

    Article  PubMed  CAS  Google Scholar 

  • Hamkalo BA, Miller OL, Bakken AH (1973) Ultrastructure of active eukaryotic genomes. Cold Spring Harbor Symp Quant Biol 38: 915–919

    Article  Google Scholar 

  • Hamkalo BA, Goldsmith MR, Rattner JB (1981) Higher order structure in chromosomes. In: Schweiger HG (ed) International cell biology 1980–1981. Springer, Berlin Heidelberg New York, pp 152–161

    Chapter  Google Scholar 

  • Harper F, Puvion-Dutilleul F (1979) Non-nucleolar transcription complexes of rat liver as revealed by spreading isolated nuclei. J Cell Sci 40: 181–192

    PubMed  CAS  Google Scholar 

  • Harper F, Florentin Y, Puvion E (1984) Localization of T-antigen on simian virus 40 minichromosomes by immunoelectron microscopy. EMBO J 3: 1235–1241

    PubMed  CAS  Google Scholar 

  • Hennig W (1985) Y chromosome function and spermatogenesis in Drosophila hydei. Adv Genet 23: 179–234

    Article  PubMed  CAS  Google Scholar 

  • Herzog M, Soyer M-O (1981) Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive species Prorocentrum micans E. Eur J Cell Biol 23: 295–302

    CAS  Google Scholar 

  • Hill RS (1979) A quantitative electron-microscope analysis of chromatin from Xenopus laevis lampbrush chromosomes. J Cell Sci 40: 145–169

    PubMed  CAS  Google Scholar 

  • Hill RS, MacGregor HC (1980) The development of lampbrush chromosome-type transcription in the early diplotene oocytes of Xenopus laevis: an electron-microscope analysis. J Cell Sci 44: 87–101

    PubMed  CAS  Google Scholar 

  • Howze GB, Hsie AW, Olins AL (1976) v-bodies in mitotic chromatin. Exp Cell Res 100:424–428

    Google Scholar 

  • Hozier JC (1979) Nucleosomes and higher levels of chromosomal organization. In: Taylor JH (ed) Molecular genetics, part 3. Academic Press, New York, pp 315–385

    Google Scholar 

  • Hügle B, Hazan R, Scheer U, Franke WW (1985) Localization of ribosomal protein 51 in the granular component of the interphase nucleolus and its distribution during mitosis. J Cell Biol 100: 873–886

    Article  PubMed  Google Scholar 

  • Hughes ME, Bürki K, Fakan S (1979) Visualization of transcription in early mouse embryos. Chromosoma 73: 179–190

    Article  PubMed  CAS  Google Scholar 

  • Igo-Kemenes T, Hörz W, Zachau HG (1982) Chromatin. Annu Rev Biochem 51: 89–121

    Article  CAS  Google Scholar 

  • Karpov VL, Preobrazhenskaya OV, Mirzabekov AD (1984) Chromatin structure of hsp 70 genes, activated by heat shock: selective removal of histones from the coding region and their absence from the 5’ region. Cell 36: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Tres LL (1975) Structural and transcriptional features of the mouse spermatid genome. J Cell Biol 65: 258–270

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46: 931–954

    Article  PubMed  CAS  Google Scholar 

  • Labhart P, Koller T (1982) Structure of the active nucleolar chromatin of Xenopus laevis oocytes. Cell 28: 279–292

    Article  PubMed  CAS  Google Scholar 

  • Labhart P, Koller T, Wunderli H (1982) Involvement of higher order chromatin structures in metaphase chromosome organization. Cell 30: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Laird CD, Chooi WY (1976) Morphology of transcription units in Drosophila melanogaster. Chromosoma 58: 193–218

    Article  PubMed  CAS  Google Scholar 

  • Laird CD, Wilkinson LE, Foe VE, Chooi WY (1976) Analysis of chromatin-associated fiber arrays. Chromosoma 58: 169–192

    Article  PubMed  CAS  Google Scholar 

  • Lamb MM, Daneholt B (1979) Characterization of active transcription units in Balbiani rings of Chironomus tentans. Cell 17: 835–848

    Article  PubMed  CAS  Google Scholar 

  • Landegent JE, Jansen in de Wal N, van Ommen GJB, Baas F, de Vijlder JJM, van Duijn P, van der Ploeg M (1985) Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization. Nature 317: 175–177

    Article  PubMed  CAS  Google Scholar 

  • Lutz C, Nagl W (1980) A reliable method for preparation and electron microscopic visualization of nucleosomes in higher plant. Planta 149: 408–410

    Article  Google Scholar 

  • Mathis D, Oudet P, Chambon P (1980) Structure of transcribing chromatin. Prog Nucleic Acid Res Mol Biol 24: 1–55

    Article  PubMed  CAS  Google Scholar 

  • McGhee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49: 1115–1156

    Article  PubMed  CAS  Google Scholar 

  • McKnight SL, Miller OL (1976) Ultrastructural patterns of RNA synthesis during early embryo-genesis of Drosophila melanogaster. Cell 8: 305–319

    Article  PubMed  CAS  Google Scholar 

  • McKnight SL, Sullivan NL, Miller OL (1976) Visualization of the silk fibroin transcription unit and nascent silk fibroin molecules on polyribosomes of Bombyx mori. Prog Nucleic Acid Res Mol Biol 19: 313–318

    Article  PubMed  CAS  Google Scholar 

  • McKnight SL, Bustin M, Miller OL (1978) Electron microscopic analysis of chromosome metabolism in the Drosophila melanogaster embryo. Cold Spring Harbor Symp Quant Biol 42: 741–754

    Article  PubMed  CAS  Google Scholar 

  • McKnight SL, Martin KA, Beyer AL, Miller OL (1979) Visualization of functionally active chromatin. In: Busch H (ed) The cell nucleus, vol 7. Academic Press, New York, pp 97–122

    Google Scholar 

  • Meyer GF, Hennig W (1974) The nucleolus in primary spermatocytes of Drosophila hydei. Chromosoma 46: 121–144

    Article  PubMed  CAS  Google Scholar 

  • Miller OL (1981) The nucleolus, chromosomes, and visualization of genetic activity. J Cell Biol 91: 15s - 27s

    Article  PubMed  Google Scholar 

  • Miller OL (1984) Some ultrastructural aspects of genetic activity in eukaryotes. J Cell Sci Suppl 1: 81–93

    Article  PubMed  CAS  Google Scholar 

  • Miller OL, Bakken AH (1972) Morphological studies of transcription. Acta Endocrinol Suppl 168: 155–177

    Google Scholar 

  • Miller OL, Beatty BR (1969a) Visualization of nucleolar genes. Science 164: 955–957

    Article  PubMed  Google Scholar 

  • Miller OL, Beatty BR (1969 b) Extrachromosomal nucleolar genes in amphibian oocytes. Genetics Suppl 61: 133–143

    Google Scholar 

  • Miller OL, Beatty BR (1969e) Nucleolar structure and function. In: Lima-de-Faria A (ed) Handbook of molecular cytology. North-Holland, Amsterdam, pp 605–619

    Google Scholar 

  • Miller OL, Beatty BR (1969d) Portrait of a gene. J Cell Physiol 74: Suppl 1: 225–232

    Article  Google Scholar 

  • Miller OL, Hamkalo BA (1972) Visualization of RNA synthesis on chromosomes. Int Rev Cytol 33: 1–25

    Article  PubMed  Google Scholar 

  • Miller OL, Beatty BR, Hamkalo BA (1972) Nuclear structure and function during amphibian oogenesis. In: Biggers JD, Schuetz AW (eds) Oogenesis. Univ Park Press, Baltimore; Butter-worths, London, pp 119–129

    Google Scholar 

  • Morgan GT, Reeder RH, Bakken AH (1983) Transcription in cloned spacers of Xenopus laevis ribosomal DNA. Proc Natl Acad Sci USA 80: 6490–6494

    Article  PubMed  CAS  Google Scholar 

  • Mott MR, Callan HG (1975) An electron-microscope study of the lampbrush chromosomes of the newt Triturus cristatus. J Cell Sci 17: 241–261

    PubMed  CAS  Google Scholar 

  • N’Da E, Bonnanfant-Jais M L, Penrad-Mobayed M, Angelier N (1986) Size uniformity of ribonucleoprotein matrix particles in loops of Pleurodeles waltlü lampbrush chromosomes visualized by electron microscopy. J Cell Sci 81: 17–27

    PubMed  Google Scholar 

  • Oda T, Nakamura T, Watanabe S (1977) Transcription complexes of chromatin showing a beads-like structure of heterogeneous ribonucleoprotein chains. J Electron Microsc 26: 203–207

    CAS  Google Scholar 

  • Old RW, Callan HG, Gross KW (1977) Localization of histone gene transcripts in newt lamp-brush chromosomes by in situ hybridization. J Cell Sci 27: 57–79

    PubMed  CAS  Google Scholar 

  • Olins AL, Olins DE (1973) Spheroid chromatin units (v bodies). J Cell Biol 59: 252a

    Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183: 330–332

    Article  PubMed  CAS  Google Scholar 

  • Olins AL, Carlson RD, Olins DE (1975) Visualization of chromatin substructure: v bodies. J Cell Biol 64: 528–537

    Article  PubMed  CAS  Google Scholar 

  • Osheim YN, Beyer AL (1985) Nascent ribonucleoprotein structure of polymerase 1, II, and Ill gene transcripts. In: Smuckler EA, Clawson GA (cds) Nuclear envelope structure and RNA maturation. Liss, New York, pp 277–295

    Google Scholar 

  • Osheim YN, Miller OL (1983) Novel amplification and transcriptional activity of chorion genes in Drosophila melanogaster follicle cells. Cell 33: 543–553

    Article  PubMed  CAS  Google Scholar 

  • Osheim YN, Miller OL, Beyer AL (1985) RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43: 143–151

    Article  PubMed  CAS  Google Scholar 

  • Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4: 281–300

    Article  PubMed  CAS  Google Scholar 

  • Palen TE, Cech TR (1984) Chromatin structure at the replication origins and transcription-initiation regions of the ribosomal RNA genes of Tetrahymena. Cell 36: 933–942

    Article  PubMed  CAS  Google Scholar 

  • Petrov P, Raitcheva E, Tsanev R (1980) Nucleosomes and nonribosomal RNA transcription in early mouse embryo. An electron microscopic study. Eur J Cell Biol 22: 708–713

    Google Scholar 

  • Prior CP, Cantor CR, Johnson EM, Littau VC, Allfrey VG (1983) Reversible changes in nucleo-some structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell 34: 1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Pruitt SC, Reeder RH (1984) Effect of topological constraint on transcription of ribosomal DNA in Xenopus oocytes. J Mol Biol 174: 121–139

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F (1983) Morphology of transcription at cellular and molecular levels. Int Rev Cytol 84: 57–101

    Article  PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Bernadac A, Puvion E, Bernhard W (1977) Visualization of two different types of nuclear transcriptional complexes in rat liver cells. J Ultrastruct Res 58: 108–117

    Article  PubMed  CAS  Google Scholar 

  • Rattner JB, Sauners C, Davie JR, Hamkalo BA (1982) Ultrastructural organization of yeast chromatin. J Cell Biol 92: 217–222

    Article  Google Scholar 

  • Reeder RH, Higashinakagawa T, Miller OL (1976) The 5’-3’ polarity of the Xenopus ribosomal RNA precursor molecule. Cell 8: 449–454

    Article  PubMed  CAS  Google Scholar 

  • Reeder RH, McKnight SL, Miller OL (1978) Contraction ratio of the nontranscribed spacer of Xenopus rDNA chromatin. Cold Spring Harbor Symp Quant Biol 42: 1174–1177

    Article  CAS  Google Scholar 

  • Ris H (1969) The molecular organization of chromosomes. In: Lima-de-Faria A (ed) Handbook of molecular cytology. North-Holland, Amsterdam, pp 221–250

    Google Scholar 

  • Ris H, Korenberg J (1979) Chromosome structure and levels of chromosome organization. In: Prescott DM, Goldstein L (eds) Cell biology, vol 2. Academic Press, New York, pp 267–361

    Google Scholar 

  • Sargan DR, Butterworth PHW (1985) Eukaryotic ternary transcription complexes: transcription complexes of RNA polymerase II are associated with histone-containing, nucleosome-like particles in vivo. Nucl Acids Res 13: 3805–3822

    Article  PubMed  CAS  Google Scholar 

  • Scheer U (1978) Changes of nucleosome frequency in nucleolar and non-nucleolar chromatin as a function of transcription: an electron microscopic study. Cell 13: 535–549

    Article  PubMed  CAS  Google Scholar 

  • Scheer U (1980) Structural organization of spacer chromatin between transcribed ribosomal RNA genes in amphibian oocytes. Eur J Cell Biol 23: 189–196

    PubMed  CAS  Google Scholar 

  • Scheer U (1986) Injection of antibodies into the nucleus of amphibian oocytes: an experimental means of interfering with gene expression in the living cell. J Embryo] Exp Morph 97 Suppl: 223–242

    Google Scholar 

  • Scheer U, Dabauvalle M-C (1985) Functional organization of the amphibian oocyte nucleus. In: Browder LW (ed) Developmental biology, vol 1. Plenum, New York, pp 385–430

    Google Scholar 

  • Scheer U, Sommerville J (1982) Sizes of chromosome loops and hnRNA molecules in oocytes of amphibia of different genome sizes. Exp Cell Res 139: 410–416

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Zentgraf H (1978) Nucleosomal and supranucleosomal organization of transcriptionally inactive rDNA circles in Dytiscus oocytes. Chromosoma 69: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Zentgraf H (1982) Morphology of nucleolar chromatin in electron microscopic spread preparations. In: Busch H, Rothblum L (eds) The cell nucleus, vol 11. Academic Press, New York, pp 143–176

    Google Scholar 

  • Scheer U, Trendelenburg MF, Franke WW (1976a) Regulation of transcription of genes of ribosomal RNA during amphibian oogenesis. A biochemical and morphological study. J Cell Biol 69: 465–489

    Google Scholar 

  • Scheer U, Franke WW, Trendelenburg MF, Spring H (1976b) Classification of loops of lamp-brush chromosomes according to the arrangement of transcriptional complexes. J Cell Sci 22: 503–519

    PubMed  CAS  Google Scholar 

  • Scheer U, Trendelenburg MF, Krohne G, Franke WW (1977) Lengths and patterns of transcriptional units in the amplified nucleoli of oocytes of Xenopus laevi.s. Chromosoma 60: 147–167

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Spring H, Trendelenburg MF (1979a) Organization of transcriptionally active chromatin in lampbrush chromosome loops. In: Busch H (ed) The cell nucleus, vol 7. Academic Press, New York, pp 3–47

    Google Scholar 

  • Scheer U, Sommerville J, Bustin M (1979 b) Injected histone antibodies interfere with transcription of lampbrush chromosome loops in oocytes of Pleurodele.s. J Cell Sci 40: 1–20

    Google Scholar 

  • Scheer U, Zentgraf H, Sauer H (1981) Different chromatin structures in Physarum polycephalum. Chromosoma 84: 279–290

    Article  PubMed  CAS  Google Scholar 

  • Seebeck T, Braun R (1982) Organization of rDNA in chromatin: Physarum. In: Busch H, Roth-blum L (eds) The cell nucleus, vol 11. Academic Press, New York, pp 177–191

    Google Scholar 

  • Skoglund U, Andersson K, Björkroth B, Lamb MM, Daneholt B (1983) Visualization of the for-mation and transport of a specific hnRNP particle. Cell 34: 847–855

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1974) The molecular organization of the chromatin fiber. In: Busch H (ed) The cell nucleus, vol 1. Academic Press, New York, pp 493–535

    Chapter  Google Scholar 

  • Sollner-Webb B, Wilkinson JK, Miller KG (1982) Transcription of Xenopus ribosomal RNA genes. In: Busch H, Rothblum L (eds) The cell nucleus, vol 12. Academic Press, New York, pp 31–67

    Google Scholar 

  • Sommerville J (1981) Immunolocalization and structural organization of nascent RNP. In: Busch H (ed) The cell nucleus, vol 8. Academic Press, New York, pp 1–57

    Google Scholar 

  • Spring H, Franke WW (1981) Transcriptionally active chromatin in loops of lampbrush chromosomes at physiological salt concentration as revealed by electron microscopy sections. Eur J Cell Biol 24: 298–308

    PubMed  CAS  Google Scholar 

  • Spring H, Scheer U, Franke WW, Trendelenburg MF (1975) Lampbrush-type chromosomes in the primary nucleus of the green alga Acetabularia mediterranea. Chromosoma 50: 25–43

    Article  PubMed  CAS  Google Scholar 

  • Spring H, Krohne G, Franke WW, Scheer U, Trendelenburg MF (1976) Homogeneity and heterogeneity of sizes of transcriptional units and spacer regions in nucleolar genes of Acetabularia. Biol Cell 25: 107–116

    CAS  Google Scholar 

  • Trendelenburg MF (1981) Initiations of transcription at distinct promoter sites in spacer regions between pre-rRNA genes in oocytes of Xenopus laevis: an electron microscopic analysis. Biol Cell 42: 1–12

    CAS  Google Scholar 

  • Trendelenburg MF (1983) Progress in visualization of eukaryotic gene transcription. Hum Genet 63: 197–215

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg MF, McKinnell RG (1979) Transcriptionally active and inactive regions of nucleolar chromatin in amplified nucleoli of fully grown oocytes of hibernating frogs, Rana pipiens (amphibia, anura). Differentiation 15: 73–95

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg MF, Scheer U, Zentgraf H, Franke WW (1976) Heterogeneity of spacer lengths in circles of amplified ribosomal DNA of two insect species, Dytiscus marginalis and Acheta domesticus. J Mol Biol 108: 453–470

    Article  PubMed  CAS  Google Scholar 

  • Vavra KJ, Colavito-Shepanski M, Gorovsky MA (1982) Organization of rDNA in chromatin: Tetrahymena. In: Busch H, Rothblum L (eds) The cell nucleus, vol 11. Academic Press, New York, pp 193–223

    Google Scholar 

  • Villard D, Fakan S (1978) Visualisation des complexes de transcription dans la chromatine étalée de mammifères: étude en autoradiographie à haute résolution. C R Acad Sci Paris 286D: 777–780

    CAS  Google Scholar 

  • Weiss E, Chose D, Schultz P, Oudet P (1985) T-antigen is the only detectable protein on the nucleosome-free origin region of isolated simian virus 40 minichromosomes. Chromosoma 92: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Widmer RM, Lucchini R, Lezzi M, Meyer B, Sogo JM, Edström J-E, Koller T (1984) Chromatin structure of a hyperactive secretory protein gene (in Balbiani ring 2) of Chironomus. EMBO J 3: 1635–1641

    PubMed  CAS  Google Scholar 

  • Woodcock CLF (1973) Ultrastructure of inactive chromatin. J Cell Biol 59: 368a

    Google Scholar 

  • Woodcock CLF, Safer JP, Stanchfield JE (1976) Structural repeating units in chromatin. Exp Cell Res 97: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf H, Müller U, Franke WW (1980 a) Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei. Eur J Cell Biol 23: 171–188

    Google Scholar 

  • Zentgraf H, Müller U, Franke WW (1980 b) Supranucleosomal organization of sea urchin sperm chromatin in regularly arranged 40 to 50 nm large granular subunits. Eur J Cell Biol 20:254–264

    Google Scholar 

  • Zentgraf H, Müller U, Scheer U, Franke WW (1981) Evidence for the existence of globular units in the supranucleosomal organization of chromatin. In: Schweiger HG (ed) International cell biology 1980–1981. Springer, Berlin Heidelberg New York, pp 139–151

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheer, U. (1987). Contributions of Electron Microscopic Spreading Preparations (“Miller Spreads”) to the Analysis of Chromosome Structure. In: Hennig, W. (eds) Structure and Function of Eukaryotic Chromosomes. Results and Problems in Cell Differentiation, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47783-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47783-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22438-0

  • Online ISBN: 978-3-540-47783-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics