Inter-Vehicle Communication on Freeways: Statistical Properties of Information Propagation in Ad-Hoc Networks

  • Martin Schönhof
  • Arne Kesting
  • Martin Treiber
  • Dirk Helbing
Conference paper


The function of adaptive cruise control (ACC) systems can be enhanced by information flows between equipped cars, i.e., by upstream transmission of messages about the current traffic situation. Message transport within one driving direction is obviously rather restricted for small percentages of equipped cars due to the limited broadcast range. Thus, we consider vehicles in the opposite driving direction as possible relay stations. Analytical results based on a Poisson approximation, which are in accordance with empirical traffic data, show the efficiency and velocity of information propagation based on transversal message hopping. The obtained propability distributions of the transmission times are compared with numerical results of microscopic traffic simulations. By simulating the formation of a typical traffic jam, we show how information about distant bottlenecks and jam fronts reaches upstream equipped cars, which then can optimize their driving strategies.


Relay Station Adaptive Cruise Control Message Propagation Drive Direction Poisson Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Davis: Phys. Rev. E 69, 066110 (2004)CrossRefGoogle Scholar
  2. 2.
    A. Kesting, M. Treiber, M. Schönhof, F. Kranke, D. Helbing: ‘‘Jam-avoiding’ adaptive cruise control (ACC) and its impact on traffic dynamics.’, these proceedingsGoogle Scholar
  3. 3.
    B.S. Kerner, H. Rehborn: Phys. Rev. E 53, 1297–1300 (1996)CrossRefGoogle Scholar
  4. 4.
    D. Helbing: Rev. Mod. Phys. 73, 1067–1141 (2001)CrossRefGoogle Scholar
  5. 5.
    M. Krbalek, D. Helbing: Physica A 333, 370–378 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    L. Neubert, L. Santen, A. Schadschneider, M. Schreckenberg: Phys. Rev. E 60, 6480–6490 (1999)CrossRefGoogle Scholar
  7. 7.
    B. Rao, P. Varaiya: Transp. Res. Rec. 1408, 35–43 (1993)Google Scholar
  8. 8.
    M. Schönhof, D. Helbing: ‘Empirical features of congested traffic states and their implications for traffic modeling’, Transp. Sci., submittedGoogle Scholar
  9. 9.
    B. Tilch, D. Helbing: ‘Evaluation of single vehicle data in dependence of the vehicle-type, lane, and site’. In: Traffic and Granular Flow’ 99, ed. by D. Helbing, H. Herrmann, M. Schreckenberg, D. Wolf (Springer, Berlin 2000) pp. 333–338Google Scholar
  10. 10.
    M. Treiber, D. Helbing: Automatisierungstechnik 49, 478–484 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Treiber, D. Helbing: ‘Realistische Mikrosimulation von Strassenverkehr mit einem einfachen Modell’. In: 16. Symposium Simulationstechnik at Rostock, Germany, September 2002, ed. by D. Tavangarian, R. Grützner, pp. 514–520 (2002)Google Scholar
  12. 12.
    M. Treiber, A. Hennecke, D. Helbing: Phys. Rev. E 62, 1805–1824 (2000)CrossRefGoogle Scholar
  13. 13., Deutsches Zentrum für Luft-und Raumfahrt e.V., BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Schönhof
    • 1
  • Arne Kesting
    • 1
  • Martin Treiber
    • 1
  • Dirk Helbing
    • 1
    • 2
  1. 1.Institute for Transport & EconomicsTechnische Universität DresdenDresdenGermany
  2. 2.Collegium Budapest — Institute for Advanced StudyBudapestHungary

Personalised recommendations