Skip to main content

Lattice Versus Lennard-Jones Models with a Net Particle Flow

  • Conference paper
Traffic and Granular Flow’05

Summary

We present and study lattice and off-lattice microscopic models in which particles interact via a local anisotropic rule. The rule induces preferential hopping along one direction, so that a net current sets in if allowed by boundary conditions. This may be viewed as an oversimplification of the situation concerning certain traffic and flow problems. The emphasis in our study is on the influence of dynamic details on the resulting (non-equilibrium) steady state. In particular, we shall discuss on the similarities and differences between a lattice model and its continuous counterpart, namely, a Lennard-Jones analogue in which the particles’ coordinates vary continuously. Our study, which involves a large series of computer simulations, in particular reveals that spatial discretization will often modify the resulting morphological properties and even induce a different phase diagram and criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  MathSciNet  Google Scholar 

  2. M.C. Cross, P.C. Hohenberg: Rev. Mod. Phys. 65, 851 (1993)

    Article  Google Scholar 

  3. R.G. Larson: The Structure and Rheology of Complex Fluids (Oxford University Press, New York 1999)

    Google Scholar 

  4. J. Dzubiella, G.P. Hoffmann, H. Löwen: Phys. Rev. E 65, 021402 (2002)

    Article  Google Scholar 

  5. P.M. Reis, T. Mullin: Phys. Rev. Lett. 89, 244301 (2002)

    Article  Google Scholar 

  6. P. Sánchez, M.R. Swift, P.J. King: Phys. Rev. Lett. 93, 184302 (2004)

    Article  Google Scholar 

  7. C.K. Chan: Phys. Rev. Lett. 72, 2915 (1994)

    Article  Google Scholar 

  8. Z. Csahók, C. Misbah, F. Rioual, A. Valance: Eur. Phys. J. E 3, 71 (2000)

    Article  Google Scholar 

  9. D. Helbing: Rev. Mod. Phys. 73, 1067 (2001)

    Article  Google Scholar 

  10. J. Hoffman, E.W. Hudson, et al.: Science 295, 466 (2002)

    Article  Google Scholar 

  11. J. Strempfer, I. Zegkinoglou, et al.: Phys. Rev. Lett. 93, 157007 (2004)

    Article  Google Scholar 

  12. U. Zeitler, H.W. Schumacher, et al.: Phys. Rev. Lett. 86, 866 (2001)

    Article  Google Scholar 

  13. B. Spivak: Phys. Rev. B 67, 125205 (2003)

    Article  Google Scholar 

  14. T.M. Liggett: Interacting Particle Systems (Springer Verlag, Heidelberg 1985)

    MATH  Google Scholar 

  15. V. Privman: Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, Cambridge 1996)

    Google Scholar 

  16. B. Schmittmann, R.K.P. Zia: ‘Statistical Mechanics of Driven Diffusive Systems’. In: Phase Transitions and Critical Phenomena, Vol. 17, ed. by C. Domb and J.L. Lebowitz (Academic, London 1996)

    Google Scholar 

  17. J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge 1999)

    Google Scholar 

  18. G. Ódor: Rev. Mod. Phys. 76, 663 (2004)

    Article  Google Scholar 

  19. T. Antal, G.M. Schütz: Phys. Rev. E 62, 83 (2000)

    Article  Google Scholar 

  20. J.L. Vallés and J. Marro: J. Stat. Phys. 43, 441 (1986)

    Article  Google Scholar 

  21. A.D. Rutenberg, C. Yeung: Phys. Rev. E 60, 2710 (1999)

    Article  Google Scholar 

  22. M. Díez-Minguito, P.L. Garrido, J. Marro: Phys. Rev. E 72, 026103 (2005)

    Article  Google Scholar 

  23. S. Katz, J.L. Lebowitz, H. Spohn: Phys. Rev. B 28, 1655 (1983); J. Stat. Phys. 34, 497 (1984)

    Article  Google Scholar 

  24. A. Achahbar, P.L. Garrido, J. Marro, M. A. Muñoz: Phys. Rev. Lett. 87, 195702 (2001); E.V. Albano, G. Saracco: Phys. Rev. Lett. 88, 145701 (2002); ibid. Phys. Rev. Lett. 92, 029602 (2004)

    Article  Google Scholar 

  25. P.L. Garrido, J.L. Lebowitz, C. Maes, H. Spohn: Phys. Rev. A 42, 1954 (1990)

    Article  MathSciNet  Google Scholar 

  26. A. Achahbar et al. (unpublished)

    Google Scholar 

  27. M. Díez-Minguito et al. (unpublished)

    Google Scholar 

  28. F. de los Santos, P.L. Garrido, M.A. Muñoz: Physica A 296, 364 (2001)

    Article  MATH  Google Scholar 

  29. B. Smit, D. Frenkel, J. Chem. Phys. 94, 5663 (1991)

    Article  Google Scholar 

  30. M. Allen, D. Tidlesley: Computer Simulations of Liquids (Oxford University Press, Oxford 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díez-Minguito, M., Garrido, P.L., Marro, J. (2007). Lattice Versus Lennard-Jones Models with a Net Particle Flow. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_4

Download citation

Publish with us

Policies and ethics