Skip to main content

The Fundamental Diagram of Pedestrian Movement Revisited — Empirical Results and Modelling

  • Conference paper
Traffic and Granular Flow’05

Summary

The simplest system for the investigation of the fundamental diagram for pedestrians is the single-file movement. We present experimental results for this system and discuss the observed linear relation between the velocity and the inverse of the density. For the modelling we treat pedestrians as self-driven objects moving in a continuous space. On the basis of a modified social force model we analyze qualitatively the influence of various approaches for the interactions of pedestrians on the resulting velocity-density relation. The one-dimensional model allows focusing on the role of the required length and remote force. We found that the reproduction of the typical form of the fundamental diagram is possible if one considers the increase of the required length of a person with increasing current velocity. Furthermore we demonstrate the influence of a remote force on the velocity-density relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. M. Predtetschenski and A. I. Milinski, Personenströme in Gebäuden-Berechnungsmethoden für die Projektierung, Verlagsgesellschaft Rudolf Müller, Köln-Braunsfeld (1971)

    Google Scholar 

  2. U. Weidmann, Transporttechnik der Fußgänger, Schriftenreihe des IVT Nr. 90, zweite ergänzte Auflage, ETH Zürich (1993)

    Google Scholar 

  3. A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, J. Stat. Mech. P10002 (2005)

    Google Scholar 

  4. P. D. Navin and R. J. Wheeler, Traf. Engin. 39, 31–36 (1969)

    Google Scholar 

  5. S. P. Hoogendoorn and W. Daamen, Transp. Sci. 39/2, 0147–0159 (2005)

    Article  Google Scholar 

  6. T. Meyer-König, H. Klüpfel and M. Schreckenberg, Assessment and analysis of evacuation processes on passenger ships by microscopic simulation, in M. Schreckenberg and S. D. Sharma (eds.), Pedestrian and Evacuation Dynamics, Springer, Berlin (2002)

    Google Scholar 

  7. A. Kirchner, H. Klüpfel, K. Nishinari, A. Schadschneider and M. Schreckenberg, J. Stat. Mech. P10011 (2004)

    Google Scholar 

  8. S. P. Hoogendoorn, P. H. L. Bovy and W. Daamen, Microscopic pedestrian wayfinding and dynamics modelling, in M. Schreckenberg and S. D. Sharma (eds.), Pedestrian and Evacuation Dynamics, Springer, Berlin (2002)

    Google Scholar 

  9. www.rimea.de

    Google Scholar 

  10. M. Muramatsu, T. Irie and T. Nagatani, Physica A 267, 487–498 (1999)

    Article  Google Scholar 

  11. V. J. Blue and J. L. Adler, J. Transp. Res. Board 1678, 135–141 (2000)

    Article  Google Scholar 

  12. C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Physica A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  13. K. Takimoto and T. Nagatani, Physica A 320, 611–621 (2003)

    Article  MATH  Google Scholar 

  14. A. Keßel, H. Klüpfel, J. Wahle and M. Schreckenberg, Microscopic simulation of pedestrian crowd motion, in M. Schreckenberg and S. D. Sharma (eds.), Pedestrian and Evacuation Dynamics, Springer, Berlin (2002)

    Google Scholar 

  15. D. Helbing and P. Molnár, Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  16. S. P. Hoogendoorn and P. H. L. Bovy, Transp. Res. Rec. 1710, 28–36 (2000)

    Article  Google Scholar 

  17. P. Thompson and E. Marchant, Fire Safety Journal 24, 131 (1995)

    Article  Google Scholar 

  18. V. Schneider and R. Könnecke, Simulating evacuation processes with ASERI, in M. Schreckenberg and S. D. Sharma (eds.), Pedestrian and Evacuation Dynamics, Springer, Berlin (2002)

    Google Scholar 

  19. P. Molnár, Modellierung und Simulation der Dynamik von Fußgängerströmen, Shaker, Aachen (1996)

    Google Scholar 

  20. D. Helbing, I. Farkas and T. Vicsek, Phys. Rev. Lett. 84, 1240–1243 (2000)

    Article  Google Scholar 

  21. D. Helbing, I. Farkas, and T. Vicsek, Nature 407, 487–490 (2000)

    Article  Google Scholar 

  22. T. Werner and D. Helbing, The social force pedestrian model applied to real life scenarios, in E. R. Galea (ed.), Pedestrian and Evacuation Dynamics, CMS Press, London (2003)

    Google Scholar 

  23. A. Seyfried, B. Steffen and T. Lippert, Physica A 368, 232–238 (2006)

    Article  Google Scholar 

  24. B. D. Hankin and R. A. Wright, Operational Research Quarterly 9, 81–88 (1958)

    Google Scholar 

  25. J. L. Pauls, Suggestions on evacuation models and research questions, Conference Proceedings of the 3rd Int. Symp. on Human Behaviour in Fire (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seyfried, A., Steffen, B., Klingsch, W., Lippert, T., Boltes, M. (2007). The Fundamental Diagram of Pedestrian Movement Revisited — Empirical Results and Modelling. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_26

Download citation

Publish with us

Policies and ethics