Skip to main content

Particle Discharge Process from a Capillary Pipe

  • Conference paper
  • 2168 Accesses

Summary

The particle discharge process from a vertical open-top pipe with a capillary outlet reveals some exceptions to the common belief that the outflux oscillation results solely from dynamic arching of beads at the orifice and that the outflux is not sensitive to the filling height. With beads of a particular size range, the outflux fluctuates greatly with time and the bulk dense granular flow in the pipe shows stop-and-go motion when the filling height is above a threshold. When the filling height falls to the threshold, led by a transitional stage, the outflux and the bulk movement become stable. The dropping velocity variation of the upper surface is measured to study the bulk motion in the pipe. With a heuristic theory, we find that the granular compaction and interstitial air pressure effect are responsible for the stop-and-go oscillation and the transitional behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yan X, Shi Q, Hou M et al., Phys. Rev. Lett. 2003 91(1):014302.

    Article  Google Scholar 

  2. Hu M B, Wu Q S, Jiang R, Chin. Phys. Lett., 2003, 20(7):1091.

    Article  Google Scholar 

  3. Chen W, Hou M, Lu K, Phys. Rev. E, 2001, 64: 061305.

    Article  Google Scholar 

  4. Hou M, Chen W, Zhang T, Lu K, Phys. Rev. Lett. 2003,91(20):204301.

    Article  Google Scholar 

  5. Beverloo W A, J. Chem. Eng. Sci., 1961, 15:260.

    Article  Google Scholar 

  6. Khelil A, Roth J, Eur. J. Mech. B /Fluids, 1994, 13:57.

    Google Scholar 

  7. Talbot T, Viot P, Phys. Rev. Lett., 2002, 89(6):064301.

    Article  Google Scholar 

  8. Reydellet G, Rioual F, Clement E, Europhys. Lett., 2000, 51:27.

    Article  Google Scholar 

  9. Goldhirsch I, Zanetti G, Phys. Rev. Lett., 1993, 70(11):1619.

    Article  Google Scholar 

  10. Wu X L, Maloy K J, Phys. Rev. Lett., 1993, 71(9):1363.

    Article  Google Scholar 

  11. Veje C T, Dimon P, Phys. Rev. E, 1997, 56(4): 4376.

    Article  Google Scholar 

  12. Moriyama O, Kuroiwa N and Matsushita M, Phys. Rev. Lett., 1998, 80:2833.

    Article  Google Scholar 

  13. Raafat T, Hulin J P, Herrmann H J, Phys. Rev. E, 1996, 53(5):4345.

    Article  Google Scholar 

  14. Aider J L, Sommier N, Raafat T, Hulin J P, Phys. Rev. E, 1999, 59(1):778.

    Article  Google Scholar 

  15. To K, Lai P Y, Pak H K, Phys. Rev. Lett., 2001, 86(1): 71.

    Article  Google Scholar 

  16. de Gennes P G, Rev. Mod. Phys. 1999, 71: S374.

    Article  Google Scholar 

  17. Bao D S, Zhang X S, Xu G L, Pan Z Q, Tang X W, Lu K Q, Phys. Rev. E, 2003, 67:062301.

    Article  Google Scholar 

  18. Duran J, Mazozi T, Luding S, Clement E, Rejchenbach J, Phys. Rev. E, 1996, 53(2): 1923.

    Article  Google Scholar 

  19. Guyon E, Oger L, Plona T J, J. Phys. D, 1987, 20: 1637.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, QS., Hu, MB., Kong, XZ., Wu, YH. (2007). Particle Discharge Process from a Capillary Pipe. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_16

Download citation

Publish with us

Policies and ethics