A. Bamberger, T. Ha-Duong: Formulation variationelle espace-temps pour le calcul par potentiel retardé d’une onde acoustique. Math. Meth. Appl. Sci. 8 (1986) 405–435, 598–608.
MATH
CrossRef
MathSciNet
Google Scholar
B. Birgisson, E. Siebrits, A. Pierce: Elastodynamic direct boundary element methods with enhanced numerical stability properties. Internat. J. Numer. Methods Engrg. 46 (1999) 871–888.
MATH
CrossRef
MathSciNet
Google Scholar
M. Bluck, S. Walker: Analysis of three-dimensional transient acoustic wave propagation using the boundary integral equation method. Internat. J. Numer. Methods Engrg. 39 (1996) 1419–1431.
MATH
CrossRef
Google Scholar
P. Ciarlet: The finite element method for elliptic problems. North-Holland, 1987.
Google Scholar
M. Costabel: Developments in boundary element methods for time-dependent problems. In: Problems and Methods in Mathematical Physics (L. Jentsch, F. Tröltzsch eds.), B.G. Teubner, Leipzig, pp. 17–32, 1994.
Google Scholar
P. Davies: Numerical stability and convergence of approximations of retarded potential integral equations. SIAM J. Numer. Anal. 31 (1994) 856–875.
MATH
CrossRef
MathSciNet
Google Scholar
P. Davies: Averaging techniques for time marching schemes for retarded potential integral equations. Appl. Numer. Math. 23 (1997) 291–310.
MATH
CrossRef
MathSciNet
Google Scholar
P. Davies, D. Duncan: Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 42 (2004) 1167–1188.
MATH
CrossRef
MathSciNet
Google Scholar
Y. Ding, A. Forestier, T. Ha-Duong: A Galerkin scheme for the time domain integral equation of acoustic scattering from a hard surface. J. Acoust. Soc. Am. 86 (1989) 1566–1572.
CrossRef
Google Scholar
A. Ergin, B. Shanker, E. Michielssen: Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm. J. Acoust. Soc. Am. 117 (2000) 1168–1178.
CrossRef
Google Scholar
M. Friedman, R. Shaw: Diffraction of pulses by cylindrical obstacles of arbitrary cross section. J. Appl. Mech. 29 (1962) 40–46.
MATH
MathSciNet
Google Scholar
T. Ha-Duong: On retarded potential boundary integral equations and their discretization. In: Computational Methods in Wave Propagation, Vol. 31 (M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne eds.), Heidelberg, Springer, pp. 301–336, 2003.
Google Scholar
T. Ha-Duong, B. Ludwig, I. Terrasse: A Galerkin BEM for transient acoustic scattering by an absorbing obstacle. Internat. J. Numer. Methods Engrg. 57 (2003) 1845–1882.
MATH
CrossRef
MathSciNet
Google Scholar
W. Hackbusch, W. Kress, S. Sauter: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. Technical Report 116, Max-Planck-Institut, Leipzig, Germany, 2005.
Google Scholar
W. Hackbusch, Z. Nowak: On the fast matrix multiplication in the boundary element method by panel-clustering. Numer. Math, 54 (1989) 463–491.
MATH
CrossRef
MathSciNet
Google Scholar
E. Hairer, C. Lubich, M. Schlichte: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6 (1985) 532–541.
MATH
CrossRef
MathSciNet
Google Scholar
P. Henrici: Fast Fourier methods in computational complex analysis. SIAM Review 21 (1979) 481–527.
MATH
CrossRef
MathSciNet
Google Scholar
C. Lubich: Convolution quadrature and discretized operational calculus I. Numer. Math. 52 (1988) 129–145.
MATH
CrossRef
MathSciNet
Google Scholar
C. Lubich: Convolution quadrature and discretized operational calculus II. Numer. Math. 52 (1988) 413–425.
MATH
CrossRef
MathSciNet
Google Scholar
C. Lubich: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67 (1994) 365–389.
MATH
CrossRef
MathSciNet
Google Scholar
C. Lubich, R. Schneider: Time discretization of parabolic boundary integral equations. Numer. Math. 63 (1992) 455–481.
MATH
CrossRef
MathSciNet
Google Scholar
E. Miller: An overview of time-domain integral equations models in electromagnetics. J. of Electromagnetic Waves and Appl. 1 (1987) 269–293.
CrossRef
Google Scholar
B. Rynne, P. Smith. Stability of time marching algorithms for the electric field integral equation. J. of Electromagnetic Waves and Appl. 4 (1990) 1181–1205.
CrossRef
Google Scholar
S. Sauter, C. Schwab: Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen. B. G. Teubner, Stuttgart, Leipzig, Wiesbaden, 2004.
Google Scholar
M. Schanz: Wave Propagation in Viscoelastic and Poroelastic Continua. A Boundary Element Approach. Lecture Notes in Applied and Computational Mechanics, Vol. 2, Springer, Heidelberg, 2001.
MATH
Google Scholar
M. Schanz, H. Antes: Application of operational quadrature methods in time domain boundary element methods. Meccanica 32 (1997) 179–186.
MATH
CrossRef
Google Scholar
M. Schanz, H. Antes, T. Rüberg: Convolution quadrature boundary element method for quasi-static visco-and poroelastic continua. Computers & Structures 83 (2005) 673–684.
CrossRef
Google Scholar