Advertisement

Trilobite Burrows

Chapter
  • 1.8k Downloads

Abstract

In the last chapter we have become aware of the incongruence between modern arthropod tracks and their fossil record: rather than the familiar impressions seen at the surface, it is the invisible undertracks that are much more likely to be found as fossils. By their deeper penetration, burrows have a still higher fossilization potential. This situation is particularly clear in the case of trilobites, which probably produced many more trackways than burrows during their lifetimes. Yet the latter are dominant in the fossil record. Their undertrace nature also implies that they preserve details that would have never survived at the sediment/water interface. Due to the high morphological resolution, an unusually large number of ichnospecies can be distinguished and be used for stratigraphic correlation (see Chap. XIV). In the present context, however, we are mainly concerned with the biological significance of trilobite burrows.

Keywords

Lower Cambrian Trace Fossil Body Fossil Head Shield Deep Burrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Chapter III

  1. Bergström J (1973) Organization, life and systematics of trilobites. Fossils and Strata 2:69Google Scholar
  2. Fortey RA (2000a) Olenid trilobites: The oldest known chemoautotrophic symbionts? Proceedings of the National Academy of Sciences of the United States of America 97, pp 6574–6578 (Olenid trilobites interpreted as chemoautotrophic symbionts in oxygenpoor sea floors)CrossRefGoogle Scholar
  3. Fortey RA (2000b) Trilobite! Eyewitness to evolution. Alfred Knopf, New York, 284 p (Popular book on trilobites)Google Scholar
  4. Fortey RA, Owens RM (1999) Feeding habits in trilobites. Palaeontology 42(3):429–465 (Comprehensive review of the different feeding habits of trilobites)CrossRefGoogle Scholar
  5. Goldring R (1985) The formation of the trace fossil Cruziana. Geol Mag 122(1):65–72 (Undertrace origin)CrossRefGoogle Scholar
  6. Orbigny A d’ (1835–1847) Voyage dans l’Amérique méridionale le Brésil, la République orientale de l’Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la République du Pérou exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833. Pitois-Leverault, Paris & Leverault, Strasbourg, 3(4) (Paléontologie), 188 p (Diagnosis of ichnogenus Cruziana, then interpreted as an algal impression)Google Scholar
  7. Seilacher A (1959) Vom Leben der Trilobiten. Naturwissenschaften 46:389–393 (Using trace fossils for trilobite Paleobiology)CrossRefGoogle Scholar
  8. Seilacher A (1970) Cruziana stratigraphy of non-fossiliferous Palaeozoic sandstones. In: Crimes TP, Harper JW (eds) Trace fossils. Geol J, Special Issue 3, pp 447–476 (Preservational and paleobiologic analysis of trilobite trace fossils and proposal of a Cruziana ichnostratigraphy)Google Scholar
  9. Seilacher A (1985) Trilobite palaeobiology and substrate relationships. T Roy Soc Edin-Earth 76:231–237 (Analysis of trilobite paleobiology with respect to functional morphology, burrowing behavior, feeding habits and the origin of Cruziana)Google Scholar
  10. Seilacher A (1992) An updated Cruziana stratigraphy of Gondwanan Paleozoic sandstones. In: Salem MJ, Hammuda OS, Eliagoubi BA (eds) The geology of Libya, 4, Elsevier, Amsterdam, pp 1565–1581 (Revised version of Cruziana ichnostratigraphy)Google Scholar
  11. Whittington HB (1992) Trilobites. Boydell Press, Rochester, 145 p, 120 pls. (The interpretation of Cruziana as a trilobite trace fossil is questioned)Google Scholar

Plate 11: Trilobite Biology and Cruziana Authorship

  1. Baldwin CT (1977) Rusophycus morgati: an asaphid produces trace fossil from the Cambro-Ordovician of Brittany and northwest Spain. J Paleontol 51(2):411–413 (Molting burrows)Google Scholar
  2. Bergström J (1976) Lower Palaeozoic trace fossils from eastern Newfoundland. Can J Earth Sci 13(11):1613–1633 (Diagnosis of Cruziana leiferikssoni. Interpreted as an opisthocline burrow produced by the trilobite Stenopilus)Google Scholar
  3. Bureau ME (1886) Sur la formation de Bilobites à 1’epoque actuelle. 1–4 (Seaweed debate of Cruziana)Google Scholar
  4. Carrington Da Costa J (1935) O problema das bilobites. Anais da Facudade de Ciencias do Porto 19(3):3–27, 2 pls. (Cruziana debate)Google Scholar
  5. Crimes TP (1975) The production and preservation of trilobite resting and burrowing traces. Lethaia 8:35–48 (Interpretation of Cruziana as furrows formed at the sediment-water interface)Google Scholar
  6. Dahmer G (1937) Lebensspuren aus dem Taunusquarzit und den Siegener Schichten (Unterdevon). Jahrbuch der Preussisches Geologisch Landesanstalt für 1936 57:523–539, 5 pls. (Rusophyciform burrows referred to Homalonotus)Google Scholar
  7. Delgado JFN (1885) Estudo sobre os bilobites e outros fosseis das quartzites da base do systema Silurico de Portugal. Terrenos Paleozoicos de Portugal, 113 p, 42 pls. Academia Real das Sciencias, Lisboa (A superbly illustrated monograph, in Portuguese with French translation, on Lower Ordovician “bilobites”, i.e., Cruziana)Google Scholar
  8. Mángano MG, Buatois LA (2003) Rusophycus leiferikssoni en la Formación Campanario: Implicancias paleobiológicas y paleoambientales. In: Buatois LA, Mángano MG (eds) Icnología: Hacia una convergencia entre geología y biología. Publicación Especial de la Asociación Paleontológica Argentina 9, pp 65–84 (Detailed description of Cruziana leiferikssoni. Interpreted as a prosocline burrow produced in intertidal settings)Google Scholar
  9. Mángano MG, Buatois LA (2004) Reconstructing early Phanerozoic intertidal ecosystems: Ichnology of the Cambrian Campanario Formation in northwest Argentina. In: Webby BD, Mángano MG, Buatois LA (eds) Trace fossils in evolutionary palaeoecology. Fossils and Strata 51:17–38 (Paleoenvironmental setting of Cruziana leifeirikssoni and its paleoecologic significance)Google Scholar
  10. Nathorst AG (1886) Nouvelles observations sur les traces d’animaux et autres phénomènes d’origine purement mécanique décrits comme “Algues fossiles”. Konglinga Svenska Vetenskapsakademien, Handlingar 21(14), 58 p, 5 pls. (Pioneering interpretation of Cruziana and others as trace fossils rather than seaweeds)Google Scholar
  11. Radwanski A, Roniewicz P (1963) Upper Cambrian trilobite ichnocoenosis from Wielka Wisniówka (Holy Cross Mountains, Poland). Acta Palaeontol Pol 8(2):259–280 (Pl. 2:Several Cruziana polonica with coxal impressions, probably melting burrows)Google Scholar
  12. Schmalfuss H (1981) Structure, pattern and function of cuticular terraces in trilobites. Lethaia 14:331–341 (Detailed study of trilobite terrace lines)Google Scholar
  13. Seilacher A (1985) Trilobite palaeobiology and substrate relationships. T Roy Soc Edin-Earth 76:231–237 (Analysis of trilobite paleobiology with respect to functional morphology, burrowing behavior, feeding habits and the origin of Cruziana)Google Scholar
  14. Shone RW (1979) Giant Cruziana from the Beaufort Group. T Geol Soc S Afr 82:371–375 (Cruziana homeomorph in Triassic fluvial sandstones)Google Scholar
  15. Zonneveld JP, Pemberton SG, Saunders TDA, Pickerill R (2002) Large, robust Cruziana from the Middle Triassic of northeastern British Columbia: Ethologic, biostratigraphic, and paleobiologic significance. Palaios 17:435–448 (Detailed documentation of a large Triassic Cruziana not made by trilobites)Google Scholar

Plate 12: Trilobite Fingerprints

  1. Seilacher A (1962) Form und Funktion des Trilobiten-Daktylus. Paläont Z, H. Schmidt-Festband, pp 218–227 (Functional morphology of trilobite appendages)Google Scholar

Plate 13: Cruziana Modifications

  1. Crimes TP (1973) The production and preservation of trilobite resting and furrowing traces. Lethaia 8:35–48 (Denies undertrace origin)Google Scholar
  2. Fenton CL, Fenton MA (1937) Trilobite “nests” and feeding burrows. Am Midl Nat 18:446–451 (Diagnosis of Cruziana jenningsi)CrossRefGoogle Scholar
  3. Jensen S, Bergström J (2000) Cheiichnus gothicus igen. et isp. n., a new Bergaueria-like arthropod trace fossil from the Lower Cambrian of Västergötland, Sweden. Geol Foren Stock For 122:293–296 (Introduction of ichnogenus Cheiichnus)Google Scholar
  4. Lessertisseur J (1956) Sur un bilobite nouveau du Gotlandien de L’Ennedi (Tchad, AEF.), Cruziana ancora. B Soc Geol Fr 6:43–47 (Silurian Cruziana ancora)Google Scholar
  5. Orłowski S, Radwaôski A, Roniewicz P (1971) Ichnospecific variability of the Upper Cambrian Rusophycus from the Holy Cross Mts. Acta Geol Pol 21:341–348 (Detailed description and interpretation of Cruziana polonica)Google Scholar
  6. Radwaôski A, Roniewicz P (1972) A long trilobite-trackway, Cruziana semiplicata Salter, from the Upper Cambrian of the Holy Cross Mts. Acta Geol Pol 22:439–447 (This paper documents the association of Cruziana semiplicata and C. polonica, proposing an olenid maker)Google Scholar
  7. Seilacher A (1970) Cruziana stratigraphy of non-fossiliferous Palaeozoic sandstones. In: Crimes TP, Harper JW (eds) Trace fossils. Geol J, Special Issue 3, pp 447–476 (Analysis of several Cruziana ichnospecies)Google Scholar

Plate 14: Cruziana semiplicata

  1. Colchen MM (1964a) Sur une coupe a travers les formations paléozoiques de la Sierra de la Demanda (Burgos-Logrono, Espagne). CR Soc Geol Fr 10:422Google Scholar
  2. Colchen MM (1964b) Successions lithologiques et niveaux repères dans le Paléozoique Antécarbonifère de la Sierra de la Demanda (Burgos-Logrono, Espagne). CR Acad Sci 259(9):4758–4761Google Scholar
  3. Crimes TP (1970) Trilobite tracks and other trace fosils from the Upper Cambrian of North Wales. Geol J 7:47–68 (Analysis of Cruziana semiplicata from the Upper Cambrian of Wales)CrossRefGoogle Scholar
  4. Färber A, Jaritz W (1964) Die Geologie des westasturischen Küstengebietes zwischen San Esteban de Pravia und Ribadeo (NW-Spanien). Geol Jb 81:679–738, Pls. 42 und 43 (Pl. 41, Fig. 3: pirouetting Cruziana semiplicata)Google Scholar
  5. Fortey RA, Seilacher A (1997) The trace fossil Cruziana semiplicata and the trilobite that made it. Lethaia 30:105–112 (U. Cambrian, Oman)CrossRefGoogle Scholar
  6. Nathorst AG (1888) Herrn Lebesconte’s neueste Bemerkungen über Cruziana. N Jb Mineral 1:205–207 (Seaweed debate)Google Scholar
  7. Neto de Carvalho C (2006) Roller coaster behaviour in the Cruziana rugosa group from Penha Garcia (Portugal): Implications for the feeding program of trilobites. Ichnos 13(4):255–265CrossRefGoogle Scholar
  8. Radwanski A, Roniewicz P (1972) A long trilobite-trackway, Cruziana semiplicata Salter, from the Upper Cambrian of the Holy Cross Mts. Acta Geol Pol 22(3):439–447 (150 cm long smoothly curved burrow referred to olenids; perfect preservation)Google Scholar
  9. Seilacher A (1997) Fossil art. An exhibition of the Geologisches Institut Tübingen University. The Royal Tyrell Museum of Palaeontology, Drumheller, Alberta, Canada, 64 p (Illustration of more scribbling C. semiplicata from Spain)Google Scholar

Plate 15: Burrowing Behavior of Silurian Trilobites

  1. Bottjer DJ, Droser ML, Savrda CE (1987) New concepts in the use of biogenic sedimentary structures for paleoenvironmental interpretation. SEPM Pacific Section, pp 1–65 (Ichnofabrics)Google Scholar
  2. Frey RW, Pemberton SG (1987) The Psilonichnus Ichnocoenose, and its relationship to adjacent marine and nonmarine Ichnocoenoses along the Georgia Coast. B Can Petrol Geol 35(3):333–357Google Scholar
  3. Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207Google Scholar
  4. Lessertisseur J (1956) Sur un bilobite nouveau du Gotlandien de L’Ennedi (Tchad, AEF.), Cruziana ancora. B Soc Geol Fr 6:43–47 (Diagnosis of Cruziana ancora)Google Scholar
  5. Seilacher A (1996) Evolution of burrowing behavior in Silurian trilobites: Ichnosubspecies of Cruziana acacensis. In: Salem MJ, Busrewil MT, Misallati AA, Sola M (eds) The geology of Sirt Basin, 3, Elsevier, Amsterdam, pp 523–530 (Definition of Cruziana acacensis ichnosubspecies and their biostratigraphic significance)Google Scholar
  6. Seilacher A, Cingolani C, Varela C (2003) Ichnostratigraphic correlation of early Paleozoic quartzites in central Argentina. In: Salem MJ, Oun KM, Seddig HM (eds) The geology of Northwest Libya. Earth Science Society of Libya 1, Tripoli, pp 275–292 (Correlation between Silurian of Argentina and North Africa using Cruziana acacencis and C. ancora as index fossils)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations