Skip to main content

Genomic Imprinting in Mammals

  • Chapter
Early Embryonic Development of Animals

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 18))

Abstract

This is a good time to write a general article on imprinting. In the last 5 years or so imprinting has progressed from an intriguing embryological observation to a firmly established biological principle with far-reaching consequences for mammalian development, genetics, and human disease. We now know why parthenogenesis in some mammals is not possible. We know of some imprinted genes and we even know what they do. We know that disomy can cause disease in humans. We know of genetic phenomena that extend classical Mendelian concepts. And we are gaining knowledge of the molecular mechanism of imprinting, knowledge that makes us believe that imprinting-like epigenetic controls guide differentiation in all multicellular organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen ND, Norris ML, Surani MAH (1990) Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell 61: 853–861

    Article  PubMed  CAS  Google Scholar 

  • Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse Igf-II receptor maps to the maternal-effect locus on chromosome 17 and is expressed only from the maternally inherited chromosome. Nature 349: 84–87

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351: 153–155

    Article  PubMed  CAS  Google Scholar 

  • Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311: 374–376

    Article  PubMed  CAS  Google Scholar 

  • Barton SC, Adams CA, Norris ML, Surani MAH (1985) Development of gynogenetic and parthenogenetic inner cell mass and trophectoderm tissues in reconstituted blastocysts in the mouse. J Embryol Exp Morphol 90: 267–285

    PubMed  CAS  Google Scholar 

  • Barton SC, Ferguson-Smith AC, Fundele R, Surani MA (1991) Influence of paternally imprinted genes on development. Development 113: 679–688

    PubMed  CAS  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Brown KW, Williams JC, Maitland NJ, Mott MG (1990) Genomic imprinting and the Beckwith-Wiedemann syndrome. Am J Hum Genet 46: 1000–1001

    PubMed  CAS  Google Scholar 

  • Brunkow ME, Tilghman SM (1991) Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev 5: 1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Cattanach BM (1986) Parental origin effects in mice. J Embryol Exp Morphol (Suppl): 137–150

    Google Scholar 

  • Cattanach BM, Beechey CV (1990) Autosomal and X-chromosome imprinting. Development (Suppl): 63–72

    Google Scholar 

  • Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315: 496–498

    Article  PubMed  CAS  Google Scholar 

  • Chaillet JR (1992) DNA methylation and genomic imprinting in the mouse. Sem Dev Biol 3: 99–105

    Article  Google Scholar 

  • Chaillet JR, Vogt.TF, Beier DR, Leder P (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66: 77–84

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64: 849–859

    Article  PubMed  CAS  Google Scholar 

  • DeLoia JA, Solter D (1990) A transgene insertional mutation at an imprinted locus in the mouse genome. Development (Suppl): 73–80

    Google Scholar 

  • Engel E (1980) A new genetic concept: uniparental disomy and its potential effect. Am J Med Genet 6: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Engler P, Haasch D, Pinkert CA, Doglio L, Glymour M, Brinster R, Storb U (1991) A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell 65: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA (1991) Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351: 667–670

    Article  PubMed  CAS  Google Scholar 

  • Fundele R, Norris ML, Barton SC, Reik W, Surani MA (1989) Systematic elimina- tion of parthenogenetic cells in mouse chimeras. Development 106: 29–35

    PubMed  CAS  Google Scholar 

  • Fundele R, Norris ML, Barton SC, Fehlau M, Howlett SK, Mills SK, Surani MA (1990) Temporal and spatial selection against parthenogenetic cells during development of fetal chimeras. Development 108: 203–211

    PubMed  CAS  Google Scholar 

  • Fundele R, Howlett SK, Kothary R, Norris ML, Mills WE, Surani MA (1991) Developmental potential of parthenogenetic cells: role of genotype-specific modifiers. Development 113: 941–946

    PubMed  CAS  Google Scholar 

  • Gardner, RL, Barton SC, Surani MA (1990) Use of triple tissue blatocyst reconstitution to study the development of diploid parthenogenetic primitive ectoderm in combination with fertilization-derived trophectoderm and primitive endoderm. Genet Res 56: 209–222

    Article  PubMed  CAS  Google Scholar 

  • Haack H, Hodgkin J (1991) Test for parental imprinting in the nematode C. elegans. Mol Gen Genet 228: 482–485

    Article  PubMed  CAS  Google Scholar 

  • Hadchouel M, Farza H, Simon D, Tiollais P, Pourcel C (1987) Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature 329: 454–456

    Article  PubMed  CAS  Google Scholar 

  • Haig D (1992) Genomic imprinting and the theory of parent-offspring conflict. Sem Dev Biol 3: 153–160

    Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor-II receptor. Cell 64: 1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Hall JG (1990) Genomic imprinting: review and relevance to human diseases. Am J Hum Genet 46: 857–873

    PubMed  CAS  Google Scholar 

  • Henry I, Bonaiti-Pellie C, Chehensse V, Beldjord C, Schwartz C, Utermann G, Junien C (1991) Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351: 665–666

    Article  PubMed  CAS  Google Scholar 

  • Howlett SK (1991) Genomic imprinting and nuclear totipotency during embryonic development. Int Rev Cytol 127: 175–192

    Article  PubMed  CAS  Google Scholar 

  • Howlett SK, Reik W (1991) Methylation levels of maternal and paternal genomes during preimplantation development. Development 113: 119–127

    PubMed  CAS  Google Scholar 

  • Kajii T, Ohama K (1977) Androgenetic origin of hydatidiform mole. Nature 268: 633–634

    Article  PubMed  CAS  Google Scholar 

  • Kaufman MH, Lee KKH, Spiers S (1989) Postimplantation development and cytogenetic analysis of diandric heterozygous diploid mouse embryos. Cytogenet Cell Genet 52: 15–18

    Article  PubMed  CAS  Google Scholar 

  • Kirkels VGHJ, Hustinx TWJ, Scheres JMJC (1980) Habitual abortion and translocation (22q; 22q): unexpected transmission from a mother to her phenotypically normal daughter. Clin Genet 18: 456–461

    Article  PubMed  CAS  Google Scholar 

  • Klose J, Reik W (1992) Expression of maternal and paternal phenotypes at the protein level. Sem Dev Biol 3: 119–126

    Google Scholar 

  • Laird CD (1990) Proposed genetic basis of Huntington’s disease. Trends Genet 6: 242–247

    Article  PubMed  CAS  Google Scholar 

  • Latham KE, Solter D (1991) Effect of egg composition on the developmental capacity of androgenetic mouse embryos. Development 113: 561–568

    PubMed  CAS  Google Scholar 

  • Lyon MF, Glenister P (1977) Factors affecting the observed number of young resulting from adjacent-2 disjunction in mice carrying a translocation. Genet Res 29: 83–92

    Article  PubMed  CAS  Google Scholar 

  • Malcolm S, Clayton-Smith J, Nicholas M, Robb S, Webb T, Armour JAL, Jeffreys AJ, Pembrey ME (1991) Uniparental disomy in Angelman’s syndrome. Lancet 337: 694–697

    Article  PubMed  CAS  Google Scholar 

  • Mann JR, Lovell-Badge RH (1984) Inviability of parthenogenones is determined by pronuclei, not egg cytoplasm. Nature 310: 66–67

    Article  PubMed  CAS  Google Scholar 

  • Mann JR, Gadi I, Harbison ML, Abbondanzo SJ, Stewart CL (1990) Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 62: 251–260

    Article  PubMed  CAS  Google Scholar 

  • McGowan R, Campbell R, Peterson A, Sapienza C (1989) Cellular mosaicism in the methylation and expression of hemizygous loci in the mouse. Genes Dev 3: 1669–1676

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179–183

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1986) Nucleocytoplasmic interactions in the mouse embryo. J Embryol Exp Morphol (Suppl): 277–290

    Google Scholar 

  • Monk M, Surani MA (1990) Genomic imprinting. Development (Suppl )

    Google Scholar 

  • Monk M, Adams RLP, Rinaldi A (1991) Decrease in methylase activity during preimplantation development in the mouse. Development 112: 189–192

    PubMed  CAS  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7: 45–49

    PubMed  CAS  Google Scholar 

  • Nagy A, Sass M, Markkula M (1989) Systematic non-uniform distribution of parthenogenetic cells in adult mouse chimeras. Development 106: 321–324

    PubMed  CAS  Google Scholar 

  • Nagy A, Gócza E, Diaz EM, Prideaux VR, Ivànyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110: 815–821

    PubMed  CAS  Google Scholar 

  • Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M (1989) Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader Willi syndrome. Nature 342: 281–285

    Article  PubMed  CAS  Google Scholar 

  • Nicholls RD, Rinchik EM, Driscoll DJ (1992) Genomic imprinting in mammalian development: Prader-Willi and Angelman syndromes as disease models. Sem Dev Biol 3: 139–152

    Google Scholar 

  • Palmer CG, Schwartz S, Hodes ME (1980) Transmission of a balanced homologous t (22q; 22q) translocation from mother to normal daughter. Clin Genet 17: 418–422

    Article  PubMed  CAS  Google Scholar 

  • Paro R (1990) Imprinting a determined state into the chromation of Drosophila. Trends Genet 6: 416–421

    Article  PubMed  CAS  Google Scholar 

  • Reik W (1988) Genomic imprinting: a possible mechanism for the parental origin effect in Huntington’s chorea. J Med Genet 25: 805–808

    Article  PubMed  CAS  Google Scholar 

  • Reik W (1989) Genomic imprinting and genetic disorders in man. Trends Genet 5: 331–336

    Article  PubMed  CAS  Google Scholar 

  • Reik W (1992) Genome imprinting. In: Grosveld F, Kollias G (eds) Transgenic animals. Academic Press: 99–126

    Google Scholar 

  • Reik W, Collick A, Norris ML, Barton SC, Surani MAH (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328: 248–251

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Howlett SK, Surani MA (1990) Imprinting by DNA methylation: from transgenes to endogenous gene sequences. Development (Suppl): 99–106

    Google Scholar 

  • Sapienza C (1989) Genome imprinting and dominance modification. Ann NY Acad Sci 564: 24–38

    Article  PubMed  CAS  Google Scholar 

  • Sapienza C (1990) Sex-linked dosage-sensitive modifiers as imprinting genes. Development (Suppl): 107–114

    Google Scholar 

  • Sapienza C, Tran TH, Paquette J, McGowan R, Peterson A (1987) Degree of methylation of transgene is dependent on gamete of origin. Nature 328: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Sapienza C, Paquette J, Tran TH, Peterson A (1989) Epigenetic and genetic factors affect transgene methylation imprinting. Development 107: 165–168

    PubMed  CAS  Google Scholar 

  • Sasaki H, Hamada T, Ueda T, Seki R, Higashinakagawa T, Sakaki Y (1991) Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development 111: 573–581

    PubMed  CAS  Google Scholar 

  • Searle AG, Beechey CV (1978) Complementation studies with mouse translocations. Cytogenet Cell Genet 20: 282–303

    Article  PubMed  CAS  Google Scholar 

  • Searle AG, Beechey CV (1990) Genetic imprinting phenomena on mouse chromosome 7. Genet Res 56: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Singh PB, Miller JR, Pearce J, Kothary R, Burton RD, Paro R, James TC, Gaunt SJ (1991) A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res 19: 789–794

    Article  PubMed  CAS  Google Scholar 

  • Solter D (1988) Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet 22: 127–146

    Article  PubMed  CAS  Google Scholar 

  • Spence JE, Perciaccante RG, Greig GM, Willard HF, Ledbetter DH, Heijtmancik JF, Pollack MS, O’Brien WE, Beaudet AL (1988) Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 42: 217–226

    PubMed  CAS  Google Scholar 

  • Surani MA (1991) Genomic imprinting: developmental significance and molecular mechanism. Curr Op Genet Dev 1: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1986a) Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Surani MAH, Reik W, Norris ML, Barton SC (1986b) Influence of germline modifications of homologous chromosomes on mouse development. J Embryol Exp Morphol (Suppl): 123–136

    Google Scholar 

  • Surani MA, Barton SC, Howlett SK, Norris M (1988a) Influence of chromosomal determinants on development of androgenetic and parthenogenetic cells. Development 103: 171–178

    PubMed  CAS  Google Scholar 

  • Surani MA, Reik W, Allen ND (1988b) Transgenes as molecular probes for genomic imprinting. Trends Genet 4: 59–62

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Allen ND, Barton SC, Fundele R, Howlett SK, Norris ML, Reik W (1990a) Developmental consequences of imprinting of parental chromosomes by DNA methylation. Philos Trans R Soc Lond B326: 313–327

    Article  CAS  Google Scholar 

  • Surani MA, Kothary R, Allen ND, Singh PB, Fundele R, Ferguson-Smith AC, Barton SC (1990b) Genome imprinting and development in the mouse. Development (Suppl): 89–98

    Google Scholar 

  • Swain JL, Stewart TA, Leder P (1987) Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50: 719–727

    Article  PubMed  CAS  Google Scholar 

  • Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P (1991) Maternal uniparental disomy for chromosome 14. J Med Genet 28: 511–514

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Solter D (1987) The developmental fate of androgenetic, parthenogenetic, and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev 2: 1344–1351

    Article  Google Scholar 

  • Thomson JA, Solter D (1988) Chimeras between parthenogenetic or androgenetic blastomeres and normal embryos: allocation to the inner cell mass and trophectoderm. Dev Biol 131: 580–583

    Article  Google Scholar 

  • Voss R, Ben-Simon E, Avital A, Zlotogora Y, Dagan J, Godfrey S, Tikochinski Y, Hillel J (1989) Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? Am J Hum Genet 45: 373–380

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reik, W. (1992). Genomic Imprinting in Mammals. In: Hennig, W. (eds) Early Embryonic Development of Animals. Results and Problems in Cell Differentiation, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47191-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47191-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21836-5

  • Online ISBN: 978-3-540-47191-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics