Skip to main content

Regeneration of the Lens in Amphibians

  • Chapter
Vertebrate Eye Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 31))

Abstract

Some urodele amphibians are the only animals that throughout their life are capable of regenerating their lens following lentectomy (Stone 1967). Other vertebrates, such as freshwater fish, chicken, and frogs can occasionally regenerate a lens, but such an ability is very limited with a short time window during their embryonic development. Chicken can regenerate the lens only during 2–4 days of development. Interestingly, regeneration occurs from the ventral iris (van Deth 1940). In Xenopus, regeneration of the lens occurs from the inner layer of the outer cornea only before metamorphosis (Filoni et al. 1997). In mammals, the only report dealing with lens regeneration is of an adult rabbit after removal of the lens and only after implantation of cytolyzing fetal tissue (Steward and Espinasse 1959). Among urodeles the ability is not universal. The axolotl, for example, a salamander with very good regenerative abilities of the limb and tail, is not able to regenerate the lens. Such restrictions pose interesting questions as to why this selection exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achazi R, Yamada T (1972) Tyrosinase activity in the Wolffian lens regeneration system. Dev Biol 27 : 295–306

    Article  PubMed  CAS  Google Scholar 

  • Apple DJ et al. (1984) Complications of intraocular lenses : a historical and histopathological review. Sury Ophthalmol 101 : 1–30

    Article  Google Scholar 

  • Altman CR, Chow RL, Lang RA, Hemmati-Brivanlou A (1997) Lens induction by pax-6 in Xenopus laevis. Dev Biol 185 : 119–123

    Article  Google Scholar 

  • Beebe DC (1994) Homeobox genes and vertebrate eye development. Invest Ophthalmol Visual Sci 35 : 2897–2900

    CAS  Google Scholar 

  • Chow RL, Roux GD, Roghani M, Palmer MA, Rifkin DB, Moscatelli DA, Lang RA (1995) FGF suppresses apoptosis and induces differentiation of fibre cells in the mouse lens. Development 121 :4383–4393

    PubMed  CAS  Google Scholar 

  • Collins JM (1972) Amplification of ribosomal ribonucleic acid cistrons in the regenerating lens of Triturus. Biochemistry 11 : 1259–1263

    Article  PubMed  CAS  Google Scholar 

  • Collins JM (1974a) Structural changes in DNA during early stages of lens regeneration in Triturus. J Biol Chem 249 : 1839–1847

    PubMed  CAS  Google Scholar 

  • Collins JM (1974b) Template ability of activated DNA from the regenerating lens. Biochem Biophys Res Commun 57 : 359–364

    Article  PubMed  CAS  Google Scholar 

  • Del Rio-Tsonis K, Washabaugh CH, Tsonis PA (1995) Expression of pax-6 during eye development and lens regeneration. Proc Natl Acad Sci USA 92 : 5092–5096

    Article  PubMed  Google Scholar 

  • Del Rio-Tsonis K, Jung J-C, Chiu I-M, Tsonis PA (1997) Conservation of fibroblast growth factor function in lens regeneration. Proc Natl Acad Sci USA 94 : 13701–13706

    Article  PubMed  Google Scholar 

  • Del Rio-Tsonis K, Trombley MT, Mcmahon G, Tsonis PA (1998) Regulation of lens regeneration by fibroblast growth factor receptor 1. Dev Dvn 213 : 140–146

    CAS  Google Scholar 

  • Del Rio-Tsonis K, Tomarev SI, Tsonis PA (1999) Regulation of Prox 1 during lens regeneration. Invest Ophthalmol Vis Sci 40 : 2039–2045

    PubMed  Google Scholar 

  • Dumont JN, Yamada T (1977) Dedifferentiation of iris epithelial cells. Dev Biol 29 : 385–401

    Article  Google Scholar 

  • Eguchi G (1963) Electron microscopic studies on lens regeneration. I. Mechanism of depigmentation of the iris. Embryologia 8 : 45–62

    Article  Google Scholar 

  • Eguchi G (1988) Cellular and molecular background of Wolffian lens regeneration. In : Eguchi G, Okada TS, Saxen L (eds). Regulatory mechanisms in developmental processes. Elsevier, Amsterdam, pp 147–158

    Google Scholar 

  • Eguchi G (1993) Lens transdifferentiation in the vertebrate retinal pigmented epithelial cells. Prog Retinal Res 12 : 205–230

    Article  CAS  Google Scholar 

  • Eguchi G, Watanabe K (1973) Elicitation of lens formation from the ventral iris epithelium of the newt by a carcinogen, N-methyl-N’-nitro-N-nitrosoguanidine. J Embryol Exp Morphol 30:63–71

    PubMed  CAS  Google Scholar 

  • Eguchi G, Abe S-I, Watanabe K (1974) Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc Natl Acad Sci USA 71 : 5052–5056

    Article  PubMed  CAS  Google Scholar 

  • Funahashi J, Sekido R, Murai K, Kamachi Y, Kondoh H (1993) δ-crystallin enhancer binding protein δEF 1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 119 : 433–446

    PubMed  CAS  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267 : 1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Hill RE, Favor J, Hogan BLM, Ton CCT, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354 : 522–525

    Article  PubMed  CAS  Google Scholar 

  • Hyuga M, Kodama R, Eguchi G (1993) Basic fibroblast growth factor as one of the essential factors regulating lens transdifferentiation of pigmented epithelial cells. Int J Dev Biol 37:319–326

    PubMed  CAS  Google Scholar 

  • Imokawa Y, Eguchi G (1992) Expression and distribution of regeneration-responsive molecule during normal development of the newt, Cynops pyrrhogaster. Int J Dev Biol 36 : 407–412

    PubMed  CAS  Google Scholar 

  • Imokawa Y, Ono S-I, Takeichi T, Eguchi G (1992) Analysis of a unique molecule responsible for regeneration and stabilization of differentiated state of tissue cells. Int J Dev Biol 36 : 399–405

    PubMed  CAS  Google Scholar 

  • Ito M, Hayashi T, Kuroiwa A, Okamoto M (1999) Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted in the adult newt. Develop Growth Differ 41 : 429–440

    Article  CAS  Google Scholar 

  • Jung J-C, Del Rio-Tsonis K, Tsonis PA (1998) Regulation of homeobox-containing genes during lens regeneration. Exp Eye Res 66 : 361–370

    Article  PubMed  CAS  Google Scholar 

  • Kappelhof JP, Vrensen GF (1992) The pathology of after-cataract. A mini review. Acta Ophthalmol 205 : 13–24

    Google Scholar 

  • Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch J-L, Dolle P, Chambon P (1994) Genetic analysis of RXR α developmental function : convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78 : 987–100

    Article  PubMed  CAS  Google Scholar 

  • Loosli F, Kmita-Cunisse M, Gehring WJ (1996) Isolation of a pax-6 homolog from the ribbonworm, Lineus sanguineus. Proc Natl Acad Sci USA 93 : 2658–2663

    Article  PubMed  CAS  Google Scholar 

  • McDevitt DS, Brahma SK (1981) Ontogeny and localization of the α, β and γ crystallins in newt eye lens development. Dev Biol 84 : 449–454

    Article  PubMed  CAS  Google Scholar 

  • McDevitt DS, Meza I, Yamada T (1969) Immunofluorescence localization of the crystallins in amphibian lens development with special reference to the γ-crystallins. Dev Biol 19 : 581–607

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J (1997) Structure of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276 : 955–960

    Article  PubMed  CAS  Google Scholar 

  • Monaghan KP, Davinson DR, Sime C, Graham E, Baldock R, Bhattacharya SS, Hill RE (1991) The Msh-like homeobox genes define domains in the developing vertebrate eye. Development 112 : 1053–1061

    PubMed  CAS  Google Scholar 

  • Nornes HO, Dressler GR, Knapik EW, Deutsch U, Gruss P (1990) Spatially and temporally restricted expression of pax-2 during murine neurogenesis. Development 109 : 797–809

    PubMed  CAS  Google Scholar 

  • Okada TS, Eguchi G, Takeichi M (1971) The expression of differentiation by chicken lens epithelium in vitro culture. Dev Growth Differ 13 : 323–336

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M (1997) Appearance of iris muscle-like cells in the pigmented iris epithelium after disappearance of intact iris muscle cells in the lentectomized newt eye. J Submicrosc Cytol Pathol. 29 : 435–441

    Google Scholar 

  • Okamoto M, Ito M, Owaribe K (1998) Difference between dorsal and ventral iris in lens producing potency in normal lens regeneration is maintained after dissociation and reaggregation of cells from the adult newt Cynops pyrrhogaster. Dev Growth Differ 40 : 11–18

    Article  PubMed  CAS  Google Scholar 

  • Oliver G, Loosli F, Koster R, Wittbrodt J, Gruss P (1996) Ectopic lens induction in fish in response to the murine homeobox gene six-3. Mech Dev 60 : 233–239

    Article  PubMed  CAS  Google Scholar 

  • Ortiz JR, Vigny M, Courtois Y, Jeanny J-C (1992) Immunocytochemical study of extracellular matrix components during lens and neural retina regeneration in the adult newt. Exp Eye Res 54 : 861–870

    Article  PubMed  CAS  Google Scholar 

  • Papalopoulou N, Kintner C (1996) A Xenopus gene, Xbr1, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Dev Biol 174 : 104–114

    Article  Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring, WJ (1994) Homology of the eyeless gene of Drosophila to the small eye in mice and aniridia in humans. Science 265 : 785–789

    Article  PubMed  CAS  Google Scholar 

  • Robinson ML, Overbeek PA, Verran DJ, Grizzle WE, Stockard CR, Friesel R, Maciaq T, Thompson JA (1995) Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development 121 : 505–514

    PubMed  CAS  Google Scholar 

  • Steward DS, Espinasse PG (1959) Regeneration of the lens of the rabbit. Nature 183 : 1815

    Article  Google Scholar 

  • Stone LS (1958) Inhibition of lens regeneration in newt eyes by isolating the dorsal iris from the neural retina. Anat Rec 131 : 151–169

    Article  PubMed  CAS  Google Scholar 

  • Stone LS (1967) An investigation recording all salamanders which can and cannot regenerate a lens from the dorsal iris. J Exp Zool 164 : 87–104

    Article  PubMed  CAS  Google Scholar 

  • Tomarev SI, Sundin O, Banerjee-Basu S, Dunkan MK, Yang J-M, Piatigorsky J (1996) Chicken homeobox gene Prox 1 related to Drosophila prospero is expressed in the developing lens and retina. Dev Dyn 206 : 354–367

    Article  PubMed  CAS  Google Scholar 

  • Ton CCT, et al (1991) Positional cloning and characterization of a paired box- and homeoboxcontaining gene from the aniridia region. Cell 67 : 1059–1074

    Article  PubMed  CAS  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113 : 1435–1449

    PubMed  CAS  Google Scholar 

  • Yamada T (1977) Control mechanisms in cell-type conversion in newt lens regeneration. Monographs in Dev Biol 13. Karger, Basel

    Google Scholar 

  • Yamada T, McDevitt DS (1974) Direct evidence for transformation of differentiated iris epithelial cells into lens cells. Dev Biol 38 : 104–118

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Zalik SE (1994) The cells of the dorsal iris involved in lens regeneration are myoepithelial cells whose cytoskeleton changes during cell conversion. Anat Embryol 189 : 475–487

    Article  PubMed  CAS  Google Scholar 

  • Zalik SE, Scott V (1973) Sequential disappearance of cell surface components during lens dedifferentiation in lens regeneration. Nat New Biol 244 : 212–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsonis, P.A. (2000). Regeneration of the Lens in Amphibians. In: Fini, M.E. (eds) Vertebrate Eye Development. Results and Problems in Cell Differentiation, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46826-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46826-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53678-6

  • Online ISBN: 978-3-540-46826-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics