Skip to main content

Transforming Growth Factor-ß Regulates Basal Expression of the hsp70 Gene Family in Cultured Chicken Embryo Cells

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 17))

Abstract

During studies of stress protein induction by heavy metal ions (Whelan and Hightower 1985), it was noticed that the levels of newly synthesized heat shock proteins (Hsps) especially Hsp90 along with Hsp70 and-or its constitutive form, Hsc70, were reduced in chicken embryo cell (CEC) cultures incubated without serum relative to serum-containing control cultures. We suspected that growth factors in calf serum might be responsible for this effect. However, after a false start involving an early commercial preparation of platelet-derived growth factor (PDGF) that initially produced an effect on Hsp90 and Hsp70 accumulation that proved to be due to a contaminant, we set the observation aside. A visit to M. Sporn’s laboratory in 1987 rekindled our interest in growth factors as potential regulators of heat shock gene expression. In particular, Sporn suggested to us that transforming growth factor-ß (TGF-ß), which only recently has been implicated in wound responses, might play such a role (Sporn et al. 1987). Shortly thereafter, I. Takenaka began her Ph.D. thesis research in the Hightower laboratory, and our renewed interest coupled with her prior experience with growth factors led us to carry out a systematic search among growth factors derived from platelets for any capable of stimulating stress protein accumulation in either CECs or an array of mammalian cell lines. TGF-ß and CECs proved to be the winning combination in our survey. The rates of accumulation of Hsp90 and three members of the Hsp70 family including Hsp70, Hsc70, and the 78 kDa glucose-regulated protein, Grp78, were all stimulated by TGF-ß in serum-free culture medium. A detailed analysis of the level of regulation of basal expression of the genes encoding these proteins was carried out, and a preliminary report on these data for the hsp70 gene family is presented here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhurst RJ, Lehnert SA, Faissner A, Duffie E (1990) TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development 108: 645–656

    PubMed  CAS  Google Scholar 

  • Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983) Transforming growth factor S in human platelets. J Biol Chem 258: 7155–7160

    PubMed  CAS  Google Scholar 

  • Banerji SS, Laing K, Morimoto RI (1987) Erythroid lineage-specific expression and inducibility of the major heat shock protein HSP70 during avian embryogenesis. Genes Dev 1: 946–953

    Article  PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LA, Welch WJ (1990) Interaction of hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 248: 850–854

    Article  PubMed  CAS  Google Scholar 

  • Bensaude O, Morange M (1983) Spontaneous high expression of heat shock protein in mouse embryonal carcinoma cells and ectoderm from day eight mouse embryo. EMBO J 2: 173–177

    PubMed  CAS  Google Scholar 

  • Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P (1989) Model for signal sequence recognition from amino-acid sequence of 54k subunit of signal recognition particle. Nature 340: 482486

    Google Scholar 

  • Bjorkman PJ, Parham P (1990) Structure, function, and diversity of class I major histocompatibility complex molecules. An Rev Biochem 59: 253–88

    Article  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennet WS, Strominger JL, Wiley DC (1987a) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506–512

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennet WS, Strominger JL, Wiley DC (1987b) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512–519

    Article  PubMed  CAS  Google Scholar 

  • Carrington JL, Roberts AB, Flanders KC, Roche NS, Reddi AH (1988) Accumulation, localization and compartmentation of transforming growth factor-8 during endochondral bone development. J Cell Biol 107: 1969–1975

    Article  PubMed  CAS  Google Scholar 

  • Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, Ninfa EG, Frey AZ, Gash DJ, Chow EP, Fisher RA, Bertonis JM, Torres G, Wallner BP, Ramachandran L, Ragin RC, Managanaro TF, MacLaughin DT, Honahoe PK, (1986) Isolation of bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 45: 685–698

    Article  PubMed  CAS  Google Scholar 

  • Chappell TG, Konforti BB, Schmid SL, Rothman JE (1987) The ATPase core of a clathrin uncoating protein. J Biol Chem 262: 746–751

    PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13: 222–245

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Lopata MA, Mac Donald RJ, Cowan NJ, Rutter WJ, Kirshner MW (1980) Number and evolutionary conservation of a and ß-tubulin and cytoplasmic ß and -y-actin genes using specific cloned cDNA probes. Cell 20: 95–105

    Article  PubMed  CAS  Google Scholar 

  • Coffey RJ, Bascom CC, Sipes NJ, Graves-Deal R, Weissman BE, Moses HL (1988a) Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol Cell Biol 8: 3088–3093

    PubMed  CAS  Google Scholar 

  • Coffey RJ, Sipes NJ, Bascom CC, Graves-Deal R, Pennington CY, Weissman BE, Moses HL (1988b) Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res 48: 3180–3185

    Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18: 239–280

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Ingolia TD, Manseau LJ, (1983) Expression of Drosophila heat shock cognate genes during heat shock and development. Dev Biol 99: 418–429

    Article  PubMed  CAS  Google Scholar 

  • DeLuca-Flaherty C, McKay DB, Parham P, Hill BL, (1990) Uncoating protein (hsc70) binds a conformationally labile domain of clathrin light chain LCa to stimulate ATP hydrolysis. Cell 62: 875–887

    Article  PubMed  CAS  Google Scholar 

  • Derynck R, Lindquist PB, Lee A, Wen D, Tamm I, Graycar J, Rhee L, Chen EY, (1988) A new type of transforming growth factor-ß. EMBO J 7: 3737–3743

    PubMed  CAS  Google Scholar 

  • Deshaies R, Koch B, Wemer-Washburne M, Craig EA, Scheckuran R (1988) 70kD stress protein homologues facilitate translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805

    Google Scholar 

  • Ellingsworth LR, Brennan JE, Fok K, Rosen DM, Bentz H, Piez KA, Seyedin SM (1986) Antibodies to the N-terminal portion of cartilage-inducing factor A and transforming growth factors beta. Immunohistochemical localization and association with differentiating cells. J Biol Chem 261: 12362–12367

    Google Scholar 

  • Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14: 339–343

    Article  PubMed  CAS  Google Scholar 

  • Fanger BO, Wakefield LM, Sporn MB (1986) Structure and properties of the cellular receptor for transforming growth factor type-beta. Biochemistry 25: 3083–3091

    Article  PubMed  CAS  Google Scholar 

  • Feng P, Catt KJ, Knecht M (1988) Transforming growth factor-ß stimulates meiotic maturation of the rat oocyte. Endocrinology 122: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Ferris DK, Harel-Bellan A, Morimoto RI, Welch WJ, Farrar WL (1988) Mitogen and lymphokine stimulation of heat shock proteins in T lymphocytes. Proc Natl Acad Sci USA 85: 3850–3854

    Article  PubMed  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346: 623–628

    Article  PubMed  CAS  Google Scholar 

  • Flynn GC, Chappell TG, Rothman JE (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385–390

    Article  PubMed  CAS  Google Scholar 

  • Gamier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120: 97–120

    Article  Google Scholar 

  • Hahnel AC, Gifford DJ, Heikkila JJ, Shultz GA (1986) Expression of the major heat shock protein (HSP70) family during early mouse embryo development. Teratog Carcinog Mutagen 6: 493–510

    Article  PubMed  CAS  Google Scholar 

  • Heikkila JJ, Ovsenek N, Krone P (1987) Examination of heat shock protein in mRNA accumulation in early Xenopus laevis embryos. Biochem Cell Biol 65: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Heine UI, Munoz EF, Flanders KC, Ellingsworth LR, Lam H-YP, Thompson NL, Roberts AB, Sporn MB (1987) Role of transforming growth factor-B in the development of the mouse embryo. J Cell Biol 105: 2861–2876

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE (1980) Cultured animal cells exposed to amino acids analogues puromycin rapidly synthesize several polypeptides. J Cell Physiol 102: 407–427

    Article  PubMed  CAS  Google Scholar 

  • Hwang DS, Crooke E, Kornberg A (1990) Aggregated DnaA protein is dissociated and activated for DNA replication by phospholipase or DnaK protein. J Biol Chem 265: 19244–19248

    PubMed  CAS  Google Scholar 

  • Ignotz RA, Endo T, Massague J (1987) Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-ß. J Biol Chem 262: 6443–6446

    PubMed  CAS  Google Scholar 

  • Jakowlew SB, Dillard PJ, Sporn MB, Roberts AB (1988) Complementary deoxyribonucleic acid cloning of a messenger ribonucleic acid encoding transforming growth factor B4 from click embryo chondrocytes. Mol Endocrinol 2: 1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Kang P-J, Ostermann J, Shilling J., Neupert W, Craig EA, Pfanner N (1990) Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Keski-Oja J, Laiho M, Lohi J (1989) Activation of latent cell derived transforming growth factor-B by the plasminogen activator urokinase. J Cell Biol 107: 50a

    Google Scholar 

  • Kim S-J, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB, Karin M, Roberts AB (1990) Autoinduction of transforming growth factor B1 is mediated by the AP-1 complex. Mol Cell Biol 10: 1492–1497

    PubMed  CAS  Google Scholar 

  • Kondaiah P, Sands MJ, Smith JM, Fields A, Roberts AB, Sporn M, Melton DA (1990) Identification of a novel transforming growth factor-ß (TGF-B5) mRNA in Xenopus laevis. J Biol Chem 265: 10891093

    Google Scholar 

  • Kothary R, Perry MD, Moran LA, Rossant J (1987) Cell lineage-specific expression of the mouse HSP68 gene during embryogenesis. Dev Biol 121: 342–348

    Article  PubMed  CAS  Google Scholar 

  • Koyasu S, Nishida E, Kadowaki T, Matsuzaki F, Iida K, Harada F, Kasuga MS H., Yahara I (1986) Two mammalian heat shock proteins, HSP90 and HSP100, are actin binding proteins. Proc Natl Acad Sci USA 83: 8054–8058

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132

    Article  PubMed  CAS  Google Scholar 

  • Lawrence DA, Pircher R, Julian P (1985) Conversion of a high molecular weight latent ß-TGF from chicken embryo fibroblasts into a low molecular weight active B-TGF under acidic conditions. Biochem Biophys Res Commun 133: 1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ (1990) Expression of HSP86 in male germ cells. Mol Cell Biol 10: 3239–3242

    PubMed  CAS  Google Scholar 

  • Lehnert SA, Akhurst RJ (1988) Embryonic expression pattern of TGF beta type-1 RNA suggest both paracrine and autocrine mechanisms of action. Development 104: 263–273

    PubMed  CAS  Google Scholar 

  • Lim L, Hall C, Leung T, Whatley S (1984) The relationship of the rat brain 68 kDa microtubuleassociated protein with synaptosomal plasma membranes and with the Drosophila 70 kDa heat-shock protein. Biochem J 224: 677–680

    PubMed  CAS  Google Scholar 

  • Lyons K, Graycar JL, Lee A, Hashmi S, Lindquist PB, Chen EY, Hogan BLM, Derynck R (1989a) Vgr1, a mammalian gene related to Xenopus Vg-1, is a member of the transforming growth factor ß gene superfamily. Proc Natl Acad USA 86: 4554–4558

    Article  CAS  Google Scholar 

  • Lyons KM, Pelton RW, Hogan BLM (1989b) Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-ß-like genes coordinately regulated aspects of embryonic development. Genes Dev. 3: 1657–1668

    Article  PubMed  CAS  Google Scholar 

  • Lyons RM, Moses HL (1990) Transforming growth factors and the regulation of cell proliferation. Eur J Biochem 187: 467–473

    Article  PubMed  CAS  Google Scholar 

  • Madisen L, Webb NR, Rose TM, Marquardt H, Ikeda T, Twardzik D, Seyedin SM, Purchio AF (1988) Transforming growth factor ß2 cDNA cloning sequence analysis. DNA 7: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Madri JA, Pratt PM, Tucker B (1988) Phenotypic modulation of endothelial cells by transforming growth factor-ß depends upon the composition and organization of the extracellular matrix. J Cell Biol 106: 1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M, O’Brien DA, Allen RL, Eddy EM (1989) Heat-shock cognate protein (hsc71) and related proteins in mouse spermatogenic cells. Biol Reprod 40: 843–852

    Article  PubMed  CAS  Google Scholar 

  • Mason AJ, Hayflick JS, Ling N, Esch F, Ueno N, Ying Y, Guillemin R, Naill H, Seeburg PH (1985) Complementary DNA sequences of ovarian follicle fluid inhibin show precursor structure and homology with transforming growth factor B. Nature 318: 659–663

    Article  PubMed  CAS  Google Scholar 

  • Massagué J (1990) The transforming growth factor-ß family. Annu Rev Cell Biol b, 597–641

    Google Scholar 

  • Milarski KL, Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci USA 83: 9517–9521

    Article  PubMed  CAS  Google Scholar 

  • Milarski KL, Morimoto RI (1989) Mutational analysis of the human hsp70 protein. J Cell Biol 109: 19471962

    Google Scholar 

  • Morimoto RI, Hunt C, Huang S, Burg KL, Banerji SS (1986) Organization, nucleotide sequence, and transcription of the chicken hsp70 gene. J Biol Chem 261: 12692–12699

    PubMed  CAS  Google Scholar 

  • Moses HL, Yang EY, Pietenpol JA (1990) TGF-F3 stimulation and inhibition of cell proliferation: new mechanistic insights, Cell 63: 245–247

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Saga S, Yamada KM (1986) A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol 103: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Napolitano EW, Pachter JS, Chin SSM. Leim RKH (1985) ß-Internexin, a ubiquitous intermediate filament-associated protein. J Cell Biol 101:1323–1331

    Google Scholar 

  • Newport J, Kirshner M (1982a) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686

    Google Scholar 

  • Newport J, Kirshner M (1982b) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30: 687–696

    Google Scholar 

  • Nilsen-Hamilton M (1990) Transforming growth factor-ß and its action on cellular growth and differentiation. In: Nilsen-Hamilton M (eds) Growth factors and development. Academic Press, Inc, San Diego, pp 96–136

    Google Scholar 

  • O’Farrel PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 40074021

    Google Scholar 

  • O’Malley K, Mauron A, Barchas JD, Kedes L (1985) Constitutively expressed rat mRNA encoding a 70kilodalton heat-shock-like protein. Mol Cell Biol 5: 3476–3483

    PubMed  Google Scholar 

  • O’Neil KT, DeGrado WF (1990) How calmodulin binds its targets: sequence independent recognition of amphiphilic a-helices. Trends Biochem Sci 15: 59–64

    Article  PubMed  Google Scholar 

  • Padgett RW, St Johston RD, Gelabert RW (1987) A transcript from Drosophila pattern gene predicts a protein homologous to the transforming growth factor-ß family. Nature 325: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Pelham RHB (1990) Functions of the hsp70 protein family: an overview. In: Morimoto RI, Tissieres ACG (eds) Stress proteins in biology and medicine. Cold Spring Harbor Lab, Cold Spring Harbor, p 287–300

    Google Scholar 

  • Penttinen RP, Kobayashi S, Bornstein P (1988) Transforming growth factor ß increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc Natl Acad Sci USA 85: 1105–1108

    Article  PubMed  CAS  Google Scholar 

  • Perkins LA, Doctor JS, Zhang K, Stinson L, Perrimon N, Craig EA (1990) Molecular and developmental characterization of the heat shock cognate 4 gene of Drosophila melanogaster. Mol Cell Biol 10: 3232–3238

    PubMed  CAS  Google Scholar 

  • Roberts AB, Anzano MA, Meyers CA, Wideman J, Blacher R, Pan YE, Stein S, Lehrman R, Smith JM, Lamb LC, Sporn MB (1983) Purification and properties of a type ß transforming growth factor from bovine kidney. Biochemistry 22: 5692–5698

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS (1986) Transforming growth factor type-beta rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83: 4167–41171

    Article  PubMed  CAS  Google Scholar 

  • Robert AB, Flanders KC, Heine UI, Jakowlew S, Kondaiah P, Kim SJ, Sporn MB (1990) Transforming growth factor-ß: multifunctional regulator or differentiation and development. Phil Trans R Soc Lond B 327: 145–154

    Article  Google Scholar 

  • Robey PG, Young MF, Fladers KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB (1987) Osteoblasts synthesize and respond to TGF-beta in vitro. J Cell Biol 105: 457–463

    Article  PubMed  CAS  Google Scholar 

  • Rosa F, Roberts AB, Danielpour D, Dart LL, Sporn MB, Dawid IB (1988) Mesoderm induction in amphibians: the role of TGF-ß2-like factors. Science 239: 783–785

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Karsenty G, Roberts AB, Roche NS, Sporn MB, David I (1988) A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factors-B Cell 52: 405–414

    CAS  Google Scholar 

  • Rothman JE (1989) Polypeptide chain binding proteins: catalyst of protein folding and related processes in cells. Cell 59: 591–601

    Article  PubMed  CAS  Google Scholar 

  • Sadis S, Raghavendra K, Schuster TM, Hightower LE (1990) Biochemical and biophysical comparison of bacterial DnaK and mammalian Hsc73, two members of an ancient stress protein family. In: Villafranca JJ (eds) Current research in protein chemistry. Academic Press, Lond New York, p 339

    Google Scholar 

  • Sanchez ER, Redmond T, Scherrer LC, Bresnick EH, Welsh MJ, Pratt WB (1988) Evidence that the 90kD heat shock protein is associated with tubulin containing complexes in L cell cytosol and in intact PtK cells. Mol Endocrinol 2: 756–760

    Article  PubMed  CAS  Google Scholar 

  • Sandberg M, Vuorio T, Hirvonen H, Alitalo K, Vuorio E (1988) Enhanced expression of TGF-ß and c-fos mRNAs in the growth plates of developing human long bones. Development 102: 461–470

    PubMed  CAS  Google Scholar 

  • Sekellick MJ, Marcus PI (1986) Induction of high titer chicken interferon. Methods Enzymol 119: 115–125

    Article  PubMed  CAS  Google Scholar 

  • Sheffield WP, Shore GC, Randall SK (1990) Mitochondrial precursor protein: effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. J Biol Chem 265: 11069–11076

    PubMed  CAS  Google Scholar 

  • Silver JC, Brunt SA, Armavil V (1990) Steroid hormone regulated expression of certain hsp70 and hsp85 genes in Achlya. In: Heat Shock Int Workshop, Ravello, Italy, IIGB Press, Naples, p 185

    Google Scholar 

  • Skowyra D, Georgopolous C, Zylicz M (1990) The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62: 939–944

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B (1987) Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 105: 1039–1049

    Article  PubMed  CAS  Google Scholar 

  • St Johnston RD, Gelbart WM (1987) Decapentaplegic transcripts are localized along the dorsal-ventral axis of the Drosophila embryo. EMBO J 6: 2785–2791

    PubMed  CAS  Google Scholar 

  • Takenaka IM (1990) Regulation of basal expression of heat shock genes by transforming growth factor-ß Ph D Thesis Univ Connecticut, Storrs, Conn ten Dijke PT, Hansen P, Iwata KK, Pieler C, Foulkes JG (1988) Identification of another member of the transforming growth factor type ß gene family. Proc Natl Acad Sci USA 85: 4715–4719

    Google Scholar 

  • Dijke P, Iwata KK, Thorikay M, Schwedes J, Stewart A, Pieler C (1990) Molecular characterization of transforming growth factor ß3. Ann NY Acad Sci (in press) Tucker RF, Shipley GD, Moses HL, Holley RW, (1984) Growth inhibitor from BSC–1 cells is closely related to the platelet type–ß transforming growth factor. Science 226–705–707

    Google Scholar 

  • Vance BA, Kowalski CG, Brinckerhoff CE (1989) Heat shock of rabbit synovial fibroblasts increases expression of mRNAs for two metalloproteinases, collagenase and stromelysin. J Cell Biol 108: 2037–2043

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Mistra LM, Rose MD (1990) Loss of BiP-GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol 110: 1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Weeks DL, Melton DA (1987) A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGFß. Cell 51: 861–867

    Article  PubMed  CAS  Google Scholar 

  • Whelan SA, Hightower LE (1985) Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J Cell Physiol 125: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Wilcox JN, Derynck R (1988) Developmental expression of transforming growth factors alpha and beta in the mouse fetus. Mol Cell Biol 8: 3415–3422

    PubMed  CAS  Google Scholar 

  • Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Wrann M, Bodmer S, de Martin R, Siepl C, Hofer-Warbinek R, Frei K, Hofer E, Fontana A (1987) T cell suppressor factor from human glioblastoma cells is a 12.5 kD protein closely related to transforming growth factor ß EMBO J 6: 1633–1666

    CAS  Google Scholar 

  • Wu BJ, Morimoto RI (1985) Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci USA 82: 6070–6074

    Article  PubMed  CAS  Google Scholar 

  • Wu B Williams GT, Morimoto RI (1987) Detection of three protein binding sites in the serum regulated promoter of human gene encoding 70kD heat shock protein. Proc Natl Acad Sci USA 84:2203–2207

    Google Scholar 

  • Zakeri Z, Wolgemuth DJ (1987) Developmental-stage-specific expression of the HSP70 gene family during differentiation of the mammalian male germ line, Mol Cell Biol 7: 1791–1796

    PubMed  CAS  Google Scholar 

  • Zakeri Z, Wolgemuth DJ, Hunt CR (1988) Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol 8: 2925–2932

    PubMed  CAS  Google Scholar 

  • Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32: 1161–1170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takenaka, I.M., Sadis, S., Hightower, L.E. (1991). Transforming Growth Factor-ß Regulates Basal Expression of the hsp70 Gene Family in Cultured Chicken Embryo Cells. In: Hightower, L., Nover, L. (eds) Heat Shock and Development. Results and Problems in Cell Differentiation, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46712-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46712-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21993-5

  • Online ISBN: 978-3-540-46712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics