Skip to main content

Structure and Function of Gelsolin

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 32))

Abstract

Gelsolin is a protein that exerts a variety of influences both within the cytoplasm and in extracellular fluids (reviewed in Yin 1987; Janmey et al. 1998). Intracellular gelsolin participates in regulation of cellular architecture and motility through its severing, capping and nucleating activities on actin filaments. Gelsolin itself is subject to control by calcium ions and polyphosphoinositide metabolites. While gene knockout experiments suggest that gelsolin is not essential for survival, it is necessary for rapid responses of such dynamic cells as fibroblasts, as during the process of wound healing, and platelets, as during clotting (Witke et al. 1995). Fibroblasts in which gelsolin has been overexpressed display increased motility (Cunningham et al. 1991). The secreted form of gelsolin, exemplified by that found in blood plasma, is identical in amino acid sequence to that found in the cytosol except that it incorporates a short peptide extension at the N-terminus of the cytoplasmic sequence (Kwiatkowski et al. 1986; Koepf et al. 1998). Alternative transcription initiation and selective RNA processing permit a single gelsolin gene in each species to produce distinct mRNA messages that code for both cytoplasmic and secreted forms of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asch HL, Head K, Dong Y, Natoli F, Winston JS, Connolly JL, Asch BB (1996) Widespread loss of gelsolin in breast cancers of humans, mice and rats. Cancer Res 56: 4841–4845

    PubMed  CAS  Google Scholar 

  • Baldassare J, Henderson PA, Tarver A, Fisher G (1997) Thrombin activation of human platelets dissociates a complex containing gelsolin and actin from phosphatidylinositide-specific phospholipase C. Biochem J 324: 283–287

    PubMed  CAS  Google Scholar 

  • Borovikov YS, Norman JC, Price LS, Weeds A, Koffer A (1995) Secretion from permeabilised mast cells is enhanced by addition of gelsolin: contrasting effects of endogenous gelsolin. J Cell Sci 108: 657–666

    PubMed  CAS  Google Scholar 

  • Bryan J, Hwo S (1986) Definition of an amino-terminal actin-binding domain and a carboxyl-terminal Cat2+-regulatory domain in human brevin. J Cell Biol 102: 1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Burtnick LD, Koepf EK, Grimes IM, Jones EY, Stuart DI, McLaughlin PJ, Robinson RC (1997) The crystal structure of plasma gelsolin: implications for actin severing, capping and nucleation. Cell 90: 661–670

    Article  PubMed  CAS  Google Scholar 

  • Chaponnier C, Janmey PA, Yin HL (1986) The actin filament-severing domain of gelsolin. J Cell Biol 103: 1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Murphy-Ullrich HE, Wells A (1996) A role for gelsolin in actuating epidermal growth factor receptor-mediated cell motility. J Cell Biol 134: 689–698

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC, Stossel TP, Kwiatkowski DJ (1991) Enhanced mobility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 251: 1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Davoodian K, Ritchings BW, Ramphal R, Bubb M (1997) Gelsolin activates DNase I in vitro and in cystic fibrosis sputum. Biochemistry 36: 9637–9641

    Article  PubMed  CAS  Google Scholar 

  • Feinberg J, Benyamin Y, Roustan C (1995) Definition of an interface implicated in gelsolin binding to the sides of actin filaments. Biochem Biophys Res Commun 209: 426–432

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Laham LE, Janmey PA, Kwiatkowski DJ, Stossel TP, Banno Y, Nozawa Y, Müllauer L, Ishizaki A, Kuzumaki N (1995) Functions of [His321]gelsolin isolated from a flat revertant of ras-transformed cells. Eur J Biochem 229: 615–620

    Article  PubMed  CAS  Google Scholar 

  • Haddad JG, Harper KD, Guoth M, Pietra GG, Sanger SW (1990) Angiopathic consequences of saturating the plasma scavenger system for actin. Proc Natl Acad Sci USA 87: 1381–1385

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Kwiatkowski DJ (1991) Actin-binding proteins. Curr Opin Cell Biol 3: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Hellweg T, Hinssen H, Eimer W (1993) The Ca2+-induced conformational change of gelsolin is located in the carboxyl-terminal half of the molecule. Biophys J 65: 799–805

    Article  PubMed  CAS  Google Scholar 

  • Herrmannsdoerfer AJ, Heeb PJ, Feustel PJ, Estes JE, Keenan CJ, Minnear FL, Selden L, Giunta C, Flor JR, Blumenstock FA (1993) Vascular clearance and organ uptake of G- and F-actin in the rat. Am J Physio1265: G1071 - G1081

    Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347: 44–49

    Article  PubMed  CAS  Google Scholar 

  • Janmey P, Stossel T, Allen P (1998) Deconstructing gelsolin: identifying sites that mimic or alter binding to actin and phosphoinositides. Chem Biol 5: R81 - R85

    Article  PubMed  CAS  Google Scholar 

  • Kinosian HJ, Selden LA, Estes JE, Gershman LC (1996) Kinetics of gelsolin interaction with phalloidin-stabilized F-actin. Biochemistry 35: 16550–16556

    Article  PubMed  CAS  Google Scholar 

  • Koepf EK, Burtnick LD (1996) Multiple pathways for denaturation of horse plasma gelsolin. Biochem Cell Biol 74: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Koepf EK, Hewitt J, Vo H, MacGillivray RTA, Burtnick LD (1998) Equus caballus gelsolin: cDNA sequence and protein structural implications. Eur J Biochem 251: 613–621

    Google Scholar 

  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278: 294–298

    Article  PubMed  CAS  Google Scholar 

  • Kraulis P (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 46–950

    Article  Google Scholar 

  • Kwiatkowski DJ, Janmey PA, Mole JE, Yin HL (1985) Isolation and properties of two actin-binding domains in gelsolin. J Biol Chem 260: 15232–15238

    PubMed  CAS  Google Scholar 

  • Kwiatkowski DJ, Stossel TP, Orkin SH, Mole JE, Colten H, Yin HL (1986) Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Markus MA, Nakayama T, Matsudaira P, Wagner G (1994) Solution structure of villin 14T, a domain conserved among actin-severing proteins. Protein Sci 3: 70–81

    Article  PubMed  CAS  Google Scholar 

  • Maury CPJ, Alli K, Baumann M (1990) Finnish hereditary amyloidosis. Amino acid sequence homology between the amyloid fibril protein and human plasma gelsolin. FEBS Lett 260: 85–87

    Google Scholar 

  • McGough A, Way M (1995) Molecular model of an actin filament capped by a severing protein. J Struct Biol 115: 144–150

    Article  PubMed  CAS  Google Scholar 

  • McGough A, Chiu W, Way M (1998) Determination of the gelsolin binding site on F-actin: implications for severing and capping. Biophys J 74: 764–772

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin P, Gooch JT, Mannherz H-G, Weeds AG (1993) Structure of gelsolin segment 1-actin complex and the mechanism of severing. Nature 364: 685–692

    Article  PubMed  CAS  Google Scholar 

  • Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J Comp Chem 12: 435–445

    Article  CAS  Google Scholar 

  • Patkowski A, Seils J, Hinssen H, Dorfmüller Th (1990) Size, shape parameters, and Ca’-induced conformational change of the gelsolin molecule: a dynamic light scattering study. Biopolymers 30: 427–434

    Article  CAS  Google Scholar 

  • Pope B, Way M, Weeds AG (1991) Two of the three actin-binding domains of gelsolin bind to the same subdomain of actin. FEBS Lett 280: 70–74

    Article  PubMed  CAS  Google Scholar 

  • Pope B, Maciver S, Weeds A (1995) Localization of the calcium-sensitive actin monomer-binding site in gelsolin to segment 4 and identification of calcium binding sites. Biochemistry 34: 1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Pope B, Gooch J, Weeds A (1997) Probing the effects of calcium on gelsolin. Biochemistry 36: 15848–15855

    Article  PubMed  CAS  Google Scholar 

  • Schnuchel A, Wiltscheck R, Eichinger L, Schleicher M, Holak TA (1995) Structure of severin domain 2 in solution. J Mol Biol 247: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Steed PM, Nagar S, Wennogle LP (1996) Phospholipase D regulation by a physical interaction with the actin-binding protein gelsolin. Biochemistry 35: 5229–5237

    Article  PubMed  CAS  Google Scholar 

  • Sun H-Q, Wooten DC, Janmey PA, Yin HL (1994) The actin side-binding domain of gelsolin also caps actin filaments. Implications for actin filament severing. J Biol Chem 269: 9473–9479

    Google Scholar 

  • Tanaka M, Hauer L, Ogiso Y, Fujita H, Moriya S, Furuuchi K, Harabayashi T, Shinohara N, Koyanagi T, Kuzumaki N (1995) Gelsolin: a candidate for suppressor of human bladder cancer. Cancer Res 55: 3228–3232

    PubMed  CAS  Google Scholar 

  • Vandekerckhove J (1990) Actin binding proteins. Curr Opin Cell Biol 2: 1–50

    Article  Google Scholar 

  • Vasconcellos CA, Lind SE (1993) Coordinated inhibition of actin-induced platelet aggregation by plasma gelsolin and vitamin D-binding protein. Blood 82: 648–3657

    Google Scholar 

  • Way M, Weeds AG (1988) Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J Mol Biol 203: 1127–1133

    Google Scholar 

  • Way M, Gooch J, Pope B, Weeds AG (1989) Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. J Cell Biol 109: 593–605

    Article  PubMed  CAS  Google Scholar 

  • Way M, Pope B, Weeds AG (1992) Evidence for functional homology in the F-actin binding domains of gelsolin and actinin: implications for the requirements of severing and capping. J Cell Biol 119: 835–842

    Article  PubMed  CAS  Google Scholar 

  • Wen D, Corina K, Chow E, Miller S, Janmey P, Pepinsky R (1996) The plasma and cytoplasmic forms of human gelsolin differ in disulfide structure. Biochemistry 35: 9700–9709

    Article  PubMed  CAS  Google Scholar 

  • Witke W, Sharpe AH, Hartwig JH, Azuma T, Stossel TP, Kwiatkowski DJ (1995) Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Xian W, Vegners R, Janmey P, Braunlin W (1995) Spectroscopic studies of a polyphosphoinositide-binding peptide from gelsolin: behavior in solutions of mixed solvent and anionic micelles. Biophys J 69: 2695–2702

    Article  PubMed  CAS  Google Scholar 

  • Yin H (1987) Gelsolin: calcium and polyphosphoinositide-regulated actin-modulating protein. BioEssays 7: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Yin H, lida K, Janmey P (1988) Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments. J Cell Biol 106: 805–812

    Article  PubMed  CAS  Google Scholar 

  • Yu F-X, Sun H-W, Janmey PA, Yin HL (1992) Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J Biol Chem 267: 14616–14621

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burtnick, L.D., Robinson, R.C., Choe, S. (2001). Structure and Function of Gelsolin. In: dos Remedios, C.G., Thomas, D.D. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46560-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46560-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53675-5

  • Online ISBN: 978-3-540-46560-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics