Skip to main content

Motility Assays of Calcium Regulation of Actin Filaments

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 36))

Abstract

The exact details of how calcium regulates muscle contraction is still an important problem in the motility field. Actin filaments in muscle have additional proteins, troponins and tropomyosin, which regulate how myosin interacts with actin. Various chapters in this volume, by S. Lehrer and M. Geeves, R. Craig, M. Miki, T. Wakabayashi and L. Tobacman, as well as recent reviews (e.g., Farah and Reinach 1995; Tobacman 1996; Squire and Morris 1998; Gordon et al. 2000) describe the structural and biochemical changes accompanying calcium regulation at the actomyosin interface. X-ray diffraction and electron micrographic data show that calcium induces changes may be ascribed to movement of either tropomyosin (Tm) alone or to both troponin (Tn) and tropomyosin (Squire and Morris 1998). Biochemical studies (Lehrer and Morris 1982; Williams et al. 1988) show that binding of myosin to actin can be cooperative in the presence of troponin, tropomyosin and calcium. Skinned fiber studies show that the calcium activation at steady force appears cooperative (Brandt et al. 1984), but that the calcium dependence of the rate of force development can be explained with little cooperativity on the basis of control of attachment (Regnier et al. 1998). Does calcium merely control the number of cross-bridges that can bind to actin or does it also control the kinetics of the of the actomyosin interaction? How is this control implemented on the molecular level?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagshaw CR (1993) Muscle contraction. 2nd ed. Chapman and Hall

    Google Scholar 

  • Bing W, Fraser IDC, Marston SB (1997a) Troponin I and troponin T interact with troponin C to produce different Ca’-dependent effects on actin-tropomyosin filament motility. Biochem J 327: 335–340

    PubMed  CAS  Google Scholar 

  • Bing W, Redwood CS, Purcell IF, Esposito G, Watkins H, Marston SB (1997b) Effects of two hypertrophic cardiomyopathy mutations in a-tropomyosin, Asp175 Asn and Glu180Gly, on Ca’ regulation of thin filament motility. Biochem Biophys Res Commun 236: 760–764

    Article  PubMed  CAS  Google Scholar 

  • Bobkov AA, Bobkova EA, Homsher E, Reisler E (1997) Activation of regulated actin by SH1modified myosin subfragment 1. Biochemistry 36: 7733–7738

    Article  PubMed  CAS  Google Scholar 

  • Brandt, PW, Diamond MS, Schachat FH (1984) The thin filament of vertebrate skeletal muscle co-operatively activates as a unit. J Mol Biol 180: 379–384

    Article  PubMed  CAS  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with a ity in solution. Proc Natl Acad Sci USA 83: 3542–3546

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, White H, Pate E (1994) A model of the release of myosin heads from actin in rapidly contracting muscle fibers Biophys J 66: 778–788

    CAS  Google Scholar 

  • Cuda G, Pate E, Cooke R, Sellers JR (1997) In vitro actin filament sliding velocities produced by mixtures of different types of myosin. Biophys J 72: 1767–1779

    Article  PubMed  CAS  Google Scholar 

  • ExpertVision (1990) Motion Analysis Corporation. 3650 N. Laughlin Road, Santa Rosa, CA 95403, USA

    Google Scholar 

  • Farah CS, Reinach FC (1995) The troponin complex and regulation of muscle contraction. FASEB J 9: 755–767

    PubMed  CAS  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: picoNewton forces and nanometer steps. Nature 368: 113–119

    Article  PubMed  CAS  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1985) Tension transients during steady shortening of frog muscle fibres. J Physiol 361: 131–150

    PubMed  CAS  Google Scholar 

  • Fraser IDC, Marston SB (1995) In vitro motility analysis of actin-tropomyosin regulation by troponin and calcium: the thin filament is switched as a single cooperative unit. J Biol Chem 270: 7836–7841

    Article  PubMed  CAS  Google Scholar 

  • Gerson JH, Bobkova E, Homsher E, Reisler E (1997) Role of residue 311 in actin-tropomyosin interaction: in vitro motility study using yeast actin mutant E311 A/R312 A. Biophys J 72: A57 (Abstr)

    Google Scholar 

  • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120: 923–934

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Godt RE, Donaldson SKB, Harris CE (1973) Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition. J Gen Physiol 62: 550–574

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, LaMadrid MA, Chen Y, Luo Z, Chase PB (1997) Calcium regulation of skeletal muscle thin filament motility in vitro. Biophys J 72: 1295–1307

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Chen Y, Liang B, LaMadrid MA, Luo Z, Chase PB (1998) Skeletal muscle regulatory proteins enhance F-actin in vitro motility. Adv Exp Med Biol 453: 187–196

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80: 853–924

    PubMed  CAS  Google Scholar 

  • Greene LE, Williams DL, Eisenberg E (1987) Regulation of actomyosin ATPase activity by troponin-tropomyosin: effect of the binding of the myosin subfragment 1 (S-1)ATP complex. Proc Natl Acad Sci USA 84: 3102–3106

    Article  PubMed  CAS  Google Scholar 

  • Griffiths PJ, Ashley CC, Bagni MA, Maeda Y, Cecchi G (1993) Cross-bridge attachment and stiffness during isotonic shortening of intact single muscle fibers. Biophys J 64: 1150–1160

    Article  PubMed  CAS  Google Scholar 

  • Gulati J (1983) Magnesium ion-dependent contraction of skinned frog muscle fibers in calcium-free solution. Biophys J 44: 113–121

    Article  PubMed  CAS  Google Scholar 

  • Harada Y, Sakurada K, Aoki T, Thomas D, Yanagida T (1990) Mechanochemical coupling in acto- myosin energy transduction studied by in vitro movement assay. J Mol Biol 216: 49–68

    Article  PubMed  CAS  Google Scholar 

  • Harris DE, Warshaw D (1993) Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J Biol Chem 268: 14764–14768

    PubMed  CAS  Google Scholar 

  • Homsher E, Wang F, Sellers JR (1992) Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am J Physiol 262: C714 - C723

    PubMed  CAS  Google Scholar 

  • Homsher E, Kim B, Bobkova A, Tobacman LS (1996) Calcium regulation of thin filament movement in an in vitro motility assay. Biophys J 70: 1881–1892

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Asakura S (1989) Calcium-triggered movement of regulated actin in vitro A fluorescence microscopy study. J Mol Biol 205: 677–683

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Tamura T, Hatori K, Matsuno K (1995) Decorating actin filaments with troponin T-I complexes and acceleration of their sliding movement on myosin molecules. Biochim Biophys Acta 1251: 43–47

    Article  PubMed  Google Scholar 

  • Honda H, Kitano Y, Hatori K, Matsuno K (1996) Dual role of tropomyosin on chemically modified actin filaments from skeletal muscle. FEBS Lett 383: 55–58

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Tagami N, Hatori K, Matsuno K (1997) Regulated crosslinked actin filaments and the decoupling between their ATPase activity and sliding motility. J Biochem Tokyo 121: 47–49

    Article  PubMed  CAS  Google Scholar 

  • Howard J (1997) Molecular motors: structural adaptations to cellular functions. Nature 389: 561–567

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Chem 7: 255318

    Google Scholar 

  • Isambert H, Venier P, Maggs A, Fattoum A, Kassab R, Pantaloni D, Carlier MF (1995) Flexibility of actin filaments derived from thermal fluctuations. J Biol Chem 270: 11437–11444

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ, Morgan DL (1981) Variation of muscle stiffness with tension during tension transients and constant velocity shortening in the frog. J Physiol 319: 193–203

    PubMed  CAS  Google Scholar 

  • Kron SJ, Toyoshima YY, Uyeda TQP, Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol 196: 399–416

    Article  PubMed  CAS  Google Scholar 

  • Landis CA, Bobkova A, Homsher E, Tobacman LS (1997) The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J Biol Chem 272: 14051–14056

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Bobkova A, Tobacman LS, Homsher E (1997) The use of pPDM-HMM and microneedles to measure pN forces exerted by myosin heads on single regulated thin filaments. Biophys J 72: A57

    Google Scholar 

  • Lee DM, Tobacman LS, Homsher E (1998) Calcium dependence of isometric force measured in single thin filaments using glass microneedles. Biophys J 74: A347

    Article  Google Scholar 

  • Lehrer SS, Morris EP (1982) Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase. J Biol Chem 257: 8073–808

    PubMed  CAS  Google Scholar 

  • Leibler S, Huse DA (1993) Porters versus rowers: a unified stochastic model of motor proteins. J Cell Biol 121: 1357–1680

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Bobkova A, Homsher E, Tobacman LS (1996) Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest 97: 2842–2848

    Article  PubMed  CAS  Google Scholar 

  • Martyn M, Chase PB, Hannon J, Huntsman L, Kushmerick M, Gordon AM (1994) Unloaded shortening of skinned muscle fibers from rabbit activated with and without Ca’. Biophys J 67: 1984–1993

    Article  PubMed  CAS  Google Scholar 

  • Mehta AD, Finer JT, Spudich JA (1997) Detection of single molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci USA 94: 7927–7931

    Article  PubMed  CAS  Google Scholar 

  • Metzger JM (1996) Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers. Biophys J 70: 409–417

    Article  PubMed  CAS  Google Scholar 

  • Molloy JE, Burnes JE, Sparrow JC, Tregear RT, Kendrick-Jones J, White DCS (1995a) Single molecule mechanics of heavy meromyosin and Si interacting with rabbit or Drosophila actins using optical tweezers. Biophys J 68: 298s - 305s

    PubMed  CAS  Google Scholar 

  • Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DCS (1995b) Force and movement produced by a single myosin head. Nature 378: 209–212

    Article  PubMed  CAS  Google Scholar 

  • Moss RL (1992) Ca’ regulation of mechanical properties of striated muscle. Mechanistic studies using extraction and replacement of regulatory proteins. Circ Res 70: 865–884

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Egelman EH (1993) A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol 232: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Ott A, Magnasco M, Simon A, Libchaber A (1993) Measurement of the persistence length of polymerized actin using fluorescence microscopy. Phys Rev E 48: R1642–1645

    Article  CAS  Google Scholar 

  • Regnier M, Martyn DA, Chase PB (1998) Calcium regulation of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in rabbit skeletal muscle. Biophys J 74: 2005–2015

    Article  PubMed  CAS  Google Scholar 

  • Sase I, Miyata H, Ishiwata S, Kinosita, K Jr (1997) Axial rotation of sliding actin filaments revealed by single fluorophore imaging. Proc Natl Acad Sci USA 94: 5646–5650

    Article  PubMed  CAS  Google Scholar 

  • Sata M, Sugiura S, Yamashita H, Aoyagi T, Momomura S, Serizawa T (1995a) Pimobendan directly sensitizes reconstituted thin filament to slide on cardiac myosin. Eur J Pharmacol 290: 55–59

    Article  PubMed  CAS  Google Scholar 

  • Sata M, Sugiura S, Yamashita H, Fujita H, Momomura S, Serizawa T (1995b) MCI-154 increases Ca’ sensitivity of reconstituted thin filament. A study using a novel in vitro motility assay technique. Circ Res 76: 626–633

    Google Scholar 

  • Sata M, Yamashita H, Sugiura S, Fujita H, Momomura S, Serizawa T (1995c) A new in vitro motility assay technique to evaluate calcium sensitivity of the cardiac contractile proteins. Pfluegers Arch 429: 443–445

    Article  CAS  Google Scholar 

  • M. Schoenberg (1998) Characterization of the myosin adenosine triphosphate ( M.ATP) cross-bridge in rabbit and frog skeletal muscle fibers. Biophys J 54: 135–148

    Google Scholar 

  • Sellers JR, Cuda G, Wang F, Homsher E (1993) Myosin specific adaptations of the motility assay. Methods Cell Biol 39: 23–49

    Article  PubMed  CAS  Google Scholar 

  • Squire JM, Morris EP (1998) A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12 (10): 761–771

    PubMed  CAS  Google Scholar 

  • Szent-Györgyi AG (1975) Calcium regulation of muscle contraction. Biophys J 15:707–723 Tawada K, Sekimoto K (1991) A physical model of ATP-induced actin-myosin movement in vitro. Biophys J 59: 343–356

    Google Scholar 

  • Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58: 447–481

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima YY, Kron SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Uyeda TQP, Kron SJ, Spudich JA (1990) Myosin step size estimation from slow sliding movement of actin over low densities of heavy meromyosin. J Mol Biol 214: 699–710

    Article  PubMed  CAS  Google Scholar 

  • Veigel C, Bartoo ML, White DC, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75 (3): 1424–1438

    Article  PubMed  CAS  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric model for activation of muscle thin filaments. J Mol Biol 266: 8–14

    Article  PubMed  CAS  Google Scholar 

  • Williams DL, Greene LE, Eisenberg E (1988) Cooperative turning on of myosin subfragment 1 adenosinetriphosphatase activity by the troponin-tropomysoin-actin complex. Biochemistry 27: 6987–6993

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Györgyi AG, Cohen C (1994) Structure of the regulatory domain of scallop myosin at 2.8-À resolution. Nature 368: 306–312

    Article  PubMed  CAS  Google Scholar 

  • Yanagida T, Oosawa F (1978) Polarized fluorescence from e-ADP incorporated into F-actin in a myosin-free single fiber: conformation of F-actin and changes induced in it by heavy meromyosin. J Mol Biol 126: 507–524

    Article  PubMed  CAS  Google Scholar 

  • Yanagida T, Nakase M, Hishiyama K, Oosawa F (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307: 58–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LaMadrid, M.A., Chase, P.B., Gordon, A.M. (2002). Motility Assays of Calcium Regulation of Actin Filaments. In: Thomas, D.D., Dos Remedios, C.G. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46558-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46558-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08641-0

  • Online ISBN: 978-3-540-46558-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics